
The length of second's hand in a watch is 1 cm. The change in velocity of its tip in 15 seconds is?
A- zero
B- \[\dfrac{\pi }{30\sqrt{2}}\]cm/s
C- \[\dfrac{\pi }{30}\] cm/s
D- \[\dfrac{\pi \sqrt{2}}{30}\]cm/s
Answer
558.6k+ views
Hint: we know that the minute hand, the hour hand and the second’s hand of the clock moves around a complete a \[2\pi \] rotation. We do not know anything about translation because the hands are in the rotational motion. So, we can use the relationship between rotation and translation for velocity to solve this problem.
Complete step by step answer:
The length given is 1 cm so it will be the radius. The hand completes \[2\pi \]radians in 60 seconds.
\[\therefore \omega =2\pi \times \dfrac{1}{60}=\dfrac{\pi }{30}rad/s\]
Let us assume that initially the hand was at 12 in the watch. So, it points in a positive x direction, after 12 s the hand rotates and covers some distance. The angle covered by it is given as:
\[\Rightarrow \dfrac{2\pi }{60}\times 15=\dfrac{\pi }{2}rad\]
While covering this much angle, the direction of the velocity changes towards the negative direction of Y axis.
We know the relationship between linear velocity and angular velocity is given by: \[v=r\omega \]
$ \Rightarrow v=1\times \dfrac{\pi }{30} \\ $
$ \therefore v=\dfrac{\pi }{30}cm/s \\ $
Initial velocity= \[\overrightarrow{v}\widehat{i}\]
Final velocity= \[-\overrightarrow{v}\widehat{j}\]
Change in velocity= \[-\overrightarrow{v}\widehat{j}-\overrightarrow{v}\widehat{i}\]
Magnitude= \[\left| -\overrightarrow{v}\widehat{j}-\overrightarrow{v}\widehat{i} \right|\]
$ \Rightarrow \sqrt{{{v}^{2}}+{{v}^{2}}} \\
\Rightarrow \sqrt{2{{v}^{2}}} \\
\Rightarrow v\sqrt{2} \\
\therefore \dfrac{\sqrt{2}\pi }{30}cm/s \\ $
So, the correct answer is “Option D”.
Note:
Here we have used the relationship between the linear velocity and the angular velocity. The length of the hand was used in cm because the options are given in cm/s otherwise we would have converted it into metres. The angle is always measured in radians and not in degrees. To find the magnitude of any vector we take its dot product with itself.
Complete step by step answer:
The length given is 1 cm so it will be the radius. The hand completes \[2\pi \]radians in 60 seconds.
\[\therefore \omega =2\pi \times \dfrac{1}{60}=\dfrac{\pi }{30}rad/s\]
Let us assume that initially the hand was at 12 in the watch. So, it points in a positive x direction, after 12 s the hand rotates and covers some distance. The angle covered by it is given as:
\[\Rightarrow \dfrac{2\pi }{60}\times 15=\dfrac{\pi }{2}rad\]
While covering this much angle, the direction of the velocity changes towards the negative direction of Y axis.
We know the relationship between linear velocity and angular velocity is given by: \[v=r\omega \]
$ \Rightarrow v=1\times \dfrac{\pi }{30} \\ $
$ \therefore v=\dfrac{\pi }{30}cm/s \\ $
Initial velocity= \[\overrightarrow{v}\widehat{i}\]
Final velocity= \[-\overrightarrow{v}\widehat{j}\]
Change in velocity= \[-\overrightarrow{v}\widehat{j}-\overrightarrow{v}\widehat{i}\]
Magnitude= \[\left| -\overrightarrow{v}\widehat{j}-\overrightarrow{v}\widehat{i} \right|\]
$ \Rightarrow \sqrt{{{v}^{2}}+{{v}^{2}}} \\
\Rightarrow \sqrt{2{{v}^{2}}} \\
\Rightarrow v\sqrt{2} \\
\therefore \dfrac{\sqrt{2}\pi }{30}cm/s \\ $
So, the correct answer is “Option D”.
Note:
Here we have used the relationship between the linear velocity and the angular velocity. The length of the hand was used in cm because the options are given in cm/s otherwise we would have converted it into metres. The angle is always measured in radians and not in degrees. To find the magnitude of any vector we take its dot product with itself.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

