The length of a metal wire is \[{l_1}\] when the tension in it is \[{T_1}\] and is \[{l_2}\] when the tension is \[{T_2}\]. What is the natural length of the wire?
A. \[\dfrac{{{l_1} + {l_2}}}{2}\]
B. \[\sqrt {{l_1}{l_2}} \]
C. \[\dfrac{{{l_1}{T_2} - {l_2}{T_1}}}{{{T_2} - {T_1}}}\]
D. \[\dfrac{{{l_1}{T_2} + {l_2}{T_1}}}{{{T_2} + {T_1}}}\]
Answer
Verified
472.8k+ views
Hint: Formula for Young Modulus is given as,
\[{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{{\text{Normal}}\;{\text{Stress}}}}{{{\text{Longitudinal}}\;{\text{Strain}}}}\].
\[{\text{Normal}}\;{\text{Stress}} = \dfrac{T}{A}\]
\[{\text{Longitudinal}}\;{\text{Strain}} = \dfrac{{\Delta l}}{l}\]
Complete step by step solution:
Given,
The length of a metal wire is \[{l_1}\] when the tension in it is \[{T_1}\]
And the length of the metal wire is \[{l_2}\] when the tension in it is \[{T_2}\]
Let us assume that the original length of the metal wire be \[l\].
And the area of the metal wire be \[A\].
In first case, change in length in the metal wire,
\[ = {l_1} - l\]
In second case, change in length in the metal wire,
\[ = {l_2} - l\]
Young's modulus is a material property which measures a solid material's strength. It describes the relation between stress and strain in the linear elasticity regime of an uniaxial deformation in a material.
Formula for Young Modulus is given as,
\[{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{{\text{Normal}}\;{\text{Stress}}}}{{{\text{Longitudinal}}\;{\text{Strain}}}}\]
Normal stress is given by,
\[{\text{Normal}}\;{\text{Stress}} = \dfrac{T}{A}\]
Longitudinal Strain is given by,
\[{\text{Longitudinal}}\;{\text{Strain}} = \dfrac{{\Delta l}}{l}\]
Now, \[{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta l}}{l}}}\]
Where, \[T\] is tension,
\[\Delta l\] is change in length
For first case,
\[{Y_1} = \dfrac{{{T_1}}}{A} \times \dfrac{l}{{{l_1} - l}}\] …… (i)
For second case,
\[{Y_2} = \dfrac{{{T_2}}}{A} \times \dfrac{l}{{{l_2} - l}}\] …… (ii)
For both the cases, Young Modulus remains same,
Therefore we equate equation (i) and (ii), as \[{Y_1}\] is equal to \[{Y_2}\]
\[
\dfrac{{{T_1}}}{A} \times \dfrac{l}{{{l_1} - l}} = \dfrac{{{T_2}}}{A} \times \dfrac{l}{{{l_2} - l}} \\
\dfrac{{{T_1}}}{{{l_1} - l}} = \dfrac{{{T_2}}}{{{l_2} - l}} \\
\]
Further solving the above equation to determine the value of \[l\]
\[
\dfrac{{{T_1}}}{{{l_1} - l}} = \dfrac{{{T_2}}}{{{l_2} - l}} \\
{T_1}{l_2} - {T_1}l = {T_2}{l_1} - {T_2}l \\
{T_2}l - {T_1}l = {T_2}{l_1} - {T_1}{l_2} \\
l\left( {{T_2} - {T_1}} \right) = {T_2}{l_1} - {T_1}{l_2} \\
l = \dfrac{{{T_2}{l_1} - {T_1}{l_2}}}{{{T_2} - {T_1}}} \\
\]
Therefore the length of the metal wire is \[\dfrac{{{T_2}{l_1} - {T_1}{l_2}}}{{{T_2} - {T_1}}}\]
Hence, the correct option is C.
Note:In both cases, we subtract the original length from the given two lengths to find the change in length. Hence, the change in lengths will be \[{l_1} - l\] and \[{l_2} - l\] respectively. The formula for Young Modulus is given by \[{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta l}}{l}}}\], after replacing the values of normal stress and longitudinal strain respectively. Here, \[\Delta l\] represents the change in length in the metal wire.
\[{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{{\text{Normal}}\;{\text{Stress}}}}{{{\text{Longitudinal}}\;{\text{Strain}}}}\].
\[{\text{Normal}}\;{\text{Stress}} = \dfrac{T}{A}\]
\[{\text{Longitudinal}}\;{\text{Strain}} = \dfrac{{\Delta l}}{l}\]
Complete step by step solution:
Given,
The length of a metal wire is \[{l_1}\] when the tension in it is \[{T_1}\]
And the length of the metal wire is \[{l_2}\] when the tension in it is \[{T_2}\]
Let us assume that the original length of the metal wire be \[l\].
And the area of the metal wire be \[A\].
In first case, change in length in the metal wire,
\[ = {l_1} - l\]
In second case, change in length in the metal wire,
\[ = {l_2} - l\]
Young's modulus is a material property which measures a solid material's strength. It describes the relation between stress and strain in the linear elasticity regime of an uniaxial deformation in a material.
Formula for Young Modulus is given as,
\[{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{{\text{Normal}}\;{\text{Stress}}}}{{{\text{Longitudinal}}\;{\text{Strain}}}}\]
Normal stress is given by,
\[{\text{Normal}}\;{\text{Stress}} = \dfrac{T}{A}\]
Longitudinal Strain is given by,
\[{\text{Longitudinal}}\;{\text{Strain}} = \dfrac{{\Delta l}}{l}\]
Now, \[{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta l}}{l}}}\]
Where, \[T\] is tension,
\[\Delta l\] is change in length
For first case,
\[{Y_1} = \dfrac{{{T_1}}}{A} \times \dfrac{l}{{{l_1} - l}}\] …… (i)
For second case,
\[{Y_2} = \dfrac{{{T_2}}}{A} \times \dfrac{l}{{{l_2} - l}}\] …… (ii)
For both the cases, Young Modulus remains same,
Therefore we equate equation (i) and (ii), as \[{Y_1}\] is equal to \[{Y_2}\]
\[
\dfrac{{{T_1}}}{A} \times \dfrac{l}{{{l_1} - l}} = \dfrac{{{T_2}}}{A} \times \dfrac{l}{{{l_2} - l}} \\
\dfrac{{{T_1}}}{{{l_1} - l}} = \dfrac{{{T_2}}}{{{l_2} - l}} \\
\]
Further solving the above equation to determine the value of \[l\]
\[
\dfrac{{{T_1}}}{{{l_1} - l}} = \dfrac{{{T_2}}}{{{l_2} - l}} \\
{T_1}{l_2} - {T_1}l = {T_2}{l_1} - {T_2}l \\
{T_2}l - {T_1}l = {T_2}{l_1} - {T_1}{l_2} \\
l\left( {{T_2} - {T_1}} \right) = {T_2}{l_1} - {T_1}{l_2} \\
l = \dfrac{{{T_2}{l_1} - {T_1}{l_2}}}{{{T_2} - {T_1}}} \\
\]
Therefore the length of the metal wire is \[\dfrac{{{T_2}{l_1} - {T_1}{l_2}}}{{{T_2} - {T_1}}}\]
Hence, the correct option is C.
Note:In both cases, we subtract the original length from the given two lengths to find the change in length. Hence, the change in lengths will be \[{l_1} - l\] and \[{l_2} - l\] respectively. The formula for Young Modulus is given by \[{\text{Young}}\;{\text{Modulus}}\; = \;\dfrac{{\dfrac{T}{A}}}{{\dfrac{{\Delta l}}{l}}}\], after replacing the values of normal stress and longitudinal strain respectively. Here, \[\Delta l\] represents the change in length in the metal wire.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE