
The least value of $\alpha \in R$ for which $4\alpha {{x}^{2}}+\dfrac{1}{x}\ge 1$ for all x>0 is
\[\begin{align}
& A.\dfrac{1}{64} \\
& B.\dfrac{1}{32} \\
& C.\dfrac{1}{27} \\
& D.\dfrac{1}{25} \\
\end{align}\]
Answer
571.5k+ views
Hint: For finding the least value of $\alpha \in R$ in the given function, we will first suppose the given function as f(x). Then we will use the first derivative test to calculate the value of x at which function changes its nature. After that, we will substitute the value of x in the function $f\left( x \right)\ge 1$ and find the range of $\alpha $. From this range, we will be able to find the minimum (least) value of $\alpha $. For the first derivative test, we will find f'(x) and then put it equal to 0 to find the value of x.
Complete step-by-step solution
Here we are given the function as $4\alpha {{x}^{2}}+\dfrac{1}{x}\ge 1$ where x>0. We need to find the least value of $\alpha \in R$. For this, let us first suppose that the function $f\left( x \right)=4\alpha {{x}^{2}}+\dfrac{1}{x}$.
Let us now use the first derivative test to find the value of x where this function changes its nature (changes from going higher to satisfy going lower or vice versa).
For this, let us find the derivative of f(x): $f\left( x \right)=4\alpha {{x}^{2}}+\dfrac{1}{x}$.
Differentiating both sides with respect to x, we get:
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( 4\alpha {{x}^{2}}+\dfrac{1}{x} \right) \\
& \Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left( 4\alpha {{x}^{2}}+\dfrac{1}{x} \right)+\dfrac{d}{dx}\left( \dfrac{1}{x} \right) \\
& \Rightarrow f'\left( x \right)=4\alpha \dfrac{d{{x}^{2}}}{dx}+\dfrac{d}{dx}\left( \dfrac{1}{x} \right) \\
\end{align}\]
As we know, $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ so we get:
\[\begin{align}
& \Rightarrow f'\left( x \right)=4\alpha \left( 2{{x}^{2-1}} \right)+\left( -1 \right){{x}^{-1-1}} \\
& \Rightarrow f'\left( x \right)=8\alpha x-{{x}^{-2}} \\
& \Rightarrow f'\left( x \right)=8\alpha x-\dfrac{1}{{{x}^{2}}} \\
\end{align}\]
Now putting f'(x) = 0 will give us value of x, so we get:
\[\Rightarrow 8\alpha x-\dfrac{1}{{{x}^{2}}}=0\]
Taking $\dfrac{1}{{{x}^{2}}}$ to other side we get:
\[\begin{align}
& \Rightarrow 8\alpha x=\dfrac{1}{{{x}^{2}}} \\
& \Rightarrow 8\alpha =\dfrac{1}{{{x}^{3}}} \\
\end{align}\]
Taking reciprocal on both sides we get:
\[\Rightarrow {{x}^{3}}=\dfrac{1}{8\alpha }\]
Taking cube root on both sides we get:
\[\begin{align}
& \Rightarrow {{\left( {{x}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( \dfrac{1}{8\alpha } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow x=\dfrac{1}{{{\left( 8\alpha \right)}^{\dfrac{1}{3}}}} \\
\end{align}\]
We know that ${{2}^{3}}=8$ so ${{8}^{\dfrac{1}{3}}}=2$ we get:
\[\Rightarrow x=\dfrac{1}{2{{\left( \alpha \right)}^{\dfrac{1}{3}}}}\]
Hence our function changes its nature at the point $x=\dfrac{1}{2{{\left( \alpha \right)}^{\dfrac{1}{3}}}}$.
We are given $f\left( x \right)\ge 1$ so we get: $4\alpha {{x}^{2}}+\dfrac{1}{x}\ge 1$.
Let us put the value of x in f(x) we will get a range of $\alpha $. Hence we get:
\[\begin{align}
& \Rightarrow 4\alpha {{\left( \dfrac{1}{2{{\left( \alpha \right)}^{\dfrac{1}{3}}}} \right)}^{2}}+\dfrac{1}{\left( \dfrac{1}{2{{\left( \alpha \right)}^{\dfrac{1}{3}}}} \right)}\ge 1 \\
& \Rightarrow 4\alpha \left( \dfrac{1}{{{2}^{2}}{{\left( \alpha \right)}^{\dfrac{2}{3}}}} \right)+2{{\left( \alpha \right)}^{\dfrac{1}{3}}}\ge 1 \\
& \Rightarrow \dfrac{4\alpha }{4{{\left( \alpha \right)}^{\dfrac{2}{3}}}}+2{{\left( \alpha \right)}^{\dfrac{1}{3}}}\ge 1 \\
& \Rightarrow \dfrac{\alpha }{{{\alpha }^{\dfrac{2}{3}}}}+2{{\alpha }^{\dfrac{1}{3}}}\ge 1 \\
\end{align}\]
We know that, $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ so we get:
\[\begin{align}
& \Rightarrow {{\alpha }^{1-\dfrac{2}{3}}}+2{{\alpha }^{\dfrac{1}{3}}}\ge 1 \\
& \Rightarrow {{\alpha }^{\dfrac{1}{3}}}+2{{\alpha }^{\dfrac{1}{3}}}\ge 1 \\
& \Rightarrow 3{{\alpha }^{\dfrac{1}{3}}}\ge 1 \\
\end{align}\]
Taking 3 to the other side, we get:
\[\Rightarrow {{\alpha }^{\dfrac{1}{3}}}\ge \dfrac{1}{3}\]
Taking cube on both sides we get:
\[\Rightarrow {{\left( {{\alpha }^{\dfrac{1}{3}}} \right)}^{3}}\ge {{\left( \dfrac{1}{3} \right)}^{3}}\]
We know $3\times 3\times 3=27$ so we get:
\[\Rightarrow \alpha \ge \dfrac{1}{27}\]
So we can see that $\alpha $ is always greater than or equal to $\dfrac{1}{27}$. We can say that $\dfrac{1}{27}$ will be the least value of $\alpha $.
Hence the least value of $\alpha $ is $\dfrac{1}{27}$.
Hence option C is the correct answer.
Note: Students should take care of the signs while solving inequalities. Take care while taking cubes or cube roots. f'(x) = 0 always tells us the value of x when f(x) changes its nature. This nature could be going from higher to lower or vice versa.
Complete step-by-step solution
Here we are given the function as $4\alpha {{x}^{2}}+\dfrac{1}{x}\ge 1$ where x>0. We need to find the least value of $\alpha \in R$. For this, let us first suppose that the function $f\left( x \right)=4\alpha {{x}^{2}}+\dfrac{1}{x}$.
Let us now use the first derivative test to find the value of x where this function changes its nature (changes from going higher to satisfy going lower or vice versa).
For this, let us find the derivative of f(x): $f\left( x \right)=4\alpha {{x}^{2}}+\dfrac{1}{x}$.
Differentiating both sides with respect to x, we get:
\[\begin{align}
& \dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( 4\alpha {{x}^{2}}+\dfrac{1}{x} \right) \\
& \Rightarrow f'\left( x \right)=\dfrac{d}{dx}\left( 4\alpha {{x}^{2}}+\dfrac{1}{x} \right)+\dfrac{d}{dx}\left( \dfrac{1}{x} \right) \\
& \Rightarrow f'\left( x \right)=4\alpha \dfrac{d{{x}^{2}}}{dx}+\dfrac{d}{dx}\left( \dfrac{1}{x} \right) \\
\end{align}\]
As we know, $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ so we get:
\[\begin{align}
& \Rightarrow f'\left( x \right)=4\alpha \left( 2{{x}^{2-1}} \right)+\left( -1 \right){{x}^{-1-1}} \\
& \Rightarrow f'\left( x \right)=8\alpha x-{{x}^{-2}} \\
& \Rightarrow f'\left( x \right)=8\alpha x-\dfrac{1}{{{x}^{2}}} \\
\end{align}\]
Now putting f'(x) = 0 will give us value of x, so we get:
\[\Rightarrow 8\alpha x-\dfrac{1}{{{x}^{2}}}=0\]
Taking $\dfrac{1}{{{x}^{2}}}$ to other side we get:
\[\begin{align}
& \Rightarrow 8\alpha x=\dfrac{1}{{{x}^{2}}} \\
& \Rightarrow 8\alpha =\dfrac{1}{{{x}^{3}}} \\
\end{align}\]
Taking reciprocal on both sides we get:
\[\Rightarrow {{x}^{3}}=\dfrac{1}{8\alpha }\]
Taking cube root on both sides we get:
\[\begin{align}
& \Rightarrow {{\left( {{x}^{3}} \right)}^{\dfrac{1}{3}}}={{\left( \dfrac{1}{8\alpha } \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow x=\dfrac{1}{{{\left( 8\alpha \right)}^{\dfrac{1}{3}}}} \\
\end{align}\]
We know that ${{2}^{3}}=8$ so ${{8}^{\dfrac{1}{3}}}=2$ we get:
\[\Rightarrow x=\dfrac{1}{2{{\left( \alpha \right)}^{\dfrac{1}{3}}}}\]
Hence our function changes its nature at the point $x=\dfrac{1}{2{{\left( \alpha \right)}^{\dfrac{1}{3}}}}$.
We are given $f\left( x \right)\ge 1$ so we get: $4\alpha {{x}^{2}}+\dfrac{1}{x}\ge 1$.
Let us put the value of x in f(x) we will get a range of $\alpha $. Hence we get:
\[\begin{align}
& \Rightarrow 4\alpha {{\left( \dfrac{1}{2{{\left( \alpha \right)}^{\dfrac{1}{3}}}} \right)}^{2}}+\dfrac{1}{\left( \dfrac{1}{2{{\left( \alpha \right)}^{\dfrac{1}{3}}}} \right)}\ge 1 \\
& \Rightarrow 4\alpha \left( \dfrac{1}{{{2}^{2}}{{\left( \alpha \right)}^{\dfrac{2}{3}}}} \right)+2{{\left( \alpha \right)}^{\dfrac{1}{3}}}\ge 1 \\
& \Rightarrow \dfrac{4\alpha }{4{{\left( \alpha \right)}^{\dfrac{2}{3}}}}+2{{\left( \alpha \right)}^{\dfrac{1}{3}}}\ge 1 \\
& \Rightarrow \dfrac{\alpha }{{{\alpha }^{\dfrac{2}{3}}}}+2{{\alpha }^{\dfrac{1}{3}}}\ge 1 \\
\end{align}\]
We know that, $\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}$ so we get:
\[\begin{align}
& \Rightarrow {{\alpha }^{1-\dfrac{2}{3}}}+2{{\alpha }^{\dfrac{1}{3}}}\ge 1 \\
& \Rightarrow {{\alpha }^{\dfrac{1}{3}}}+2{{\alpha }^{\dfrac{1}{3}}}\ge 1 \\
& \Rightarrow 3{{\alpha }^{\dfrac{1}{3}}}\ge 1 \\
\end{align}\]
Taking 3 to the other side, we get:
\[\Rightarrow {{\alpha }^{\dfrac{1}{3}}}\ge \dfrac{1}{3}\]
Taking cube on both sides we get:
\[\Rightarrow {{\left( {{\alpha }^{\dfrac{1}{3}}} \right)}^{3}}\ge {{\left( \dfrac{1}{3} \right)}^{3}}\]
We know $3\times 3\times 3=27$ so we get:
\[\Rightarrow \alpha \ge \dfrac{1}{27}\]
So we can see that $\alpha $ is always greater than or equal to $\dfrac{1}{27}$. We can say that $\dfrac{1}{27}$ will be the least value of $\alpha $.
Hence the least value of $\alpha $ is $\dfrac{1}{27}$.
Hence option C is the correct answer.
Note: Students should take care of the signs while solving inequalities. Take care while taking cubes or cube roots. f'(x) = 0 always tells us the value of x when f(x) changes its nature. This nature could be going from higher to lower or vice versa.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

