
The Jupiter’s period of revolution around the Sun is $12$ times that of the earth. Assuming the planetary orbits to be circular, find the acceleration of Jupiter in the heliocentric reference frame.
(A) $2 \times {10^{ - 4}}m/{s^2}$
(B) $4.2 \times {10^{ - 4}}m/{s^2}$
(C) $2.2 \times {10^{ - 4}}m/{s^2}$
(D) $4 \times {10^{ - 4}}m/{s^2}$
Answer
570k+ views
Hint:Here first we have to find the time period and velocity for Jupiter with the help of force and then we can find the acceleration. Often known as Newton’s law of gravitation, the gravitational force is described as the magnitude of force between two points.We shall use this formula to solve this question.
Complete step by step answer:
Given,
Jupiter's period of revolution around the Sun is $12$ times that of the earth.
Let velocity of Jupiter be ${V_J}$ and velocity of earth be ${V_E}$.Let the force between Jupiter and Sun be ${F_1}$ and the force between Sun and Earth be ${F_2}$.Also, let the mass of Sun be ${M_S}$ and mass of Jupiter be ${M_J}$.Let $G$ be the gravitational constant.Let us consider ${R_J}$ as the radius of Jupiter.
Now force ${F_1}$ is given by-
${F_1} = \dfrac{{G{M_s}{M_J}}}{{{R_J}^2}} \\$
$\Rightarrow\dfrac{{{M_J}{V_J}^2}}{{{R_J}}} = \dfrac{{G{M_s}{M_J}}}{{{R_J}^2}} \\$
$\Rightarrow{V_J}^2 = \dfrac{{G{M_s}}}{{{R_j}}} \\$
$\Rightarrow{V_J} = \sqrt {\dfrac{{G{M_s}}}{{{R_J}}}} \\$
Similarly, the velocity of Earth can be found as-
${V_E} = \sqrt {\dfrac{{G{M_s}}}{{{R_E}}}} $
Now, let the time period of revolution of Jupiter be ${T_J}$ and earth be ${T_E}$.
According to question,
${T_J} = 12{T_E} \\$
$\Rightarrow\dfrac{{{T_J}}}{{{T_E}}} = 12 \\$
Also,
${T_J} = \dfrac{{2\pi {R_J}}}{{{V_J}}} \\$
$\Rightarrow{T_E} = \dfrac{{2\pi {R_E}}}{{{V_E}}} \\ $
Then,
$\dfrac{{{T_J}}}{{{T_E}}} = \dfrac{{{R_J}}}{{{R_E}}}\left( {\dfrac{{{V_E}}}{{{v_J}}}} \right) \\$
$\Rightarrow\dfrac{{{T_J}}}{{{T_E}}}= \dfrac{{{R_J}}}{{{R_E}}}\left( {\sqrt {\dfrac{{{R_J}}}{{{R_E}}}} } \right)\\$
$\Rightarrow\dfrac{{{T_J}}}{{{T_E}}}= {\left( {\dfrac{{{R_J}}}{{{R_E}}}} \right)^{3/2}} \\ $
Therefore,
$\dfrac{{{R_J}}}{{{R_E}}} = {\left( {\dfrac{{{T_J}}}{{{T_E}}}} \right)^{2/3}} = {(12)^{2/3}} \\$
$\Rightarrow{R_J} = 5.24\,{R_E} \\$
Also, velocity of Jupiter, ${V_J}^2 = \dfrac{{G{M_S}}}{{{R_J}}}$
And we know that
${R_J} = \dfrac{{{T_J}{V_J}}}{{2\pi }}$
$\Rightarrow{V_J}^2 = \dfrac{{G{M_S}}}{{{R_J}}} = \dfrac{{G{M_S}}}{{\dfrac{{T{V_J}}}{{2\pi }}}} \\$
$\Rightarrow{V_J}^3 = \dfrac{{G{M_S}2\pi }}{{{T_J}}} \\$
$\Rightarrow{V_J} = {\left( {\dfrac{{G{M_S}2\pi }}{{{T_J}}}} \right)^{1/3}} \\$
In heliocentric reference frame-
${T_J} = 12{T_E}$
$\Rightarrow{T_J} = 12$ years
Therefore,
${V_J} = {\left( {\dfrac{{6.67 \times {{10}^{ - 11}} \times 1.98 \times {{10}^{30}} \times 2\pi }}
{{12 \times 365 \times 24 \times 3600}}} \right)^{1/3}} \\$
$\Rightarrow{V_J}= 12989.08\,m/s \\$
$\Rightarrow{V_J}= 12.98\,km/s \\$
Therefore, acceleration of Jupiter
$\dfrac{{G{M_S}}}{{{R_J}^2}} \\$
$\Rightarrow \dfrac{{G{M_S}}}{{{{\left( {\dfrac{{T{V_J}}}{{2\pi }}} \right)}^2}}} \\$
$\Rightarrow \dfrac{{4{\pi ^2}{M_S}}}{{{T^2}{V_J}^2}} \\$
$\Rightarrow \dfrac{{{{\left( {2\pi } \right)}^2}G{M_S}}}{{{T^2}
{{\left( {\dfrac{{2\pi G{M_S}}}{{{T_S}}}} \right)}^{1/3}}}} \\$
$\Rightarrow\dfrac{{{{\left( {2\pi } \right)}^{5/3}}{{\left( {G{M_S}} \right)}^{2/3}}}}
{{{T_J}^{5/3}}} \\$
$\therefore 2.15 \times {10^{ - 4}}m/{s^2} \\$
Hence, option C is correct.
Additional information:
Heliocentrism is a cosmical paradigm in which the Sun, while the Earth and other bodies revolve around it, is believed to lie at or near a focal point (e.g. of the solar system or the universe).
Note:In this solution we have to be very careful while putting the values in each and every equation as putting wrong values will lead to a different answer. Also, the time period and radius values cannot be mixed up.
Complete step by step answer:
Given,
Jupiter's period of revolution around the Sun is $12$ times that of the earth.
Let velocity of Jupiter be ${V_J}$ and velocity of earth be ${V_E}$.Let the force between Jupiter and Sun be ${F_1}$ and the force between Sun and Earth be ${F_2}$.Also, let the mass of Sun be ${M_S}$ and mass of Jupiter be ${M_J}$.Let $G$ be the gravitational constant.Let us consider ${R_J}$ as the radius of Jupiter.
Now force ${F_1}$ is given by-
${F_1} = \dfrac{{G{M_s}{M_J}}}{{{R_J}^2}} \\$
$\Rightarrow\dfrac{{{M_J}{V_J}^2}}{{{R_J}}} = \dfrac{{G{M_s}{M_J}}}{{{R_J}^2}} \\$
$\Rightarrow{V_J}^2 = \dfrac{{G{M_s}}}{{{R_j}}} \\$
$\Rightarrow{V_J} = \sqrt {\dfrac{{G{M_s}}}{{{R_J}}}} \\$
Similarly, the velocity of Earth can be found as-
${V_E} = \sqrt {\dfrac{{G{M_s}}}{{{R_E}}}} $
Now, let the time period of revolution of Jupiter be ${T_J}$ and earth be ${T_E}$.
According to question,
${T_J} = 12{T_E} \\$
$\Rightarrow\dfrac{{{T_J}}}{{{T_E}}} = 12 \\$
Also,
${T_J} = \dfrac{{2\pi {R_J}}}{{{V_J}}} \\$
$\Rightarrow{T_E} = \dfrac{{2\pi {R_E}}}{{{V_E}}} \\ $
Then,
$\dfrac{{{T_J}}}{{{T_E}}} = \dfrac{{{R_J}}}{{{R_E}}}\left( {\dfrac{{{V_E}}}{{{v_J}}}} \right) \\$
$\Rightarrow\dfrac{{{T_J}}}{{{T_E}}}= \dfrac{{{R_J}}}{{{R_E}}}\left( {\sqrt {\dfrac{{{R_J}}}{{{R_E}}}} } \right)\\$
$\Rightarrow\dfrac{{{T_J}}}{{{T_E}}}= {\left( {\dfrac{{{R_J}}}{{{R_E}}}} \right)^{3/2}} \\ $
Therefore,
$\dfrac{{{R_J}}}{{{R_E}}} = {\left( {\dfrac{{{T_J}}}{{{T_E}}}} \right)^{2/3}} = {(12)^{2/3}} \\$
$\Rightarrow{R_J} = 5.24\,{R_E} \\$
Also, velocity of Jupiter, ${V_J}^2 = \dfrac{{G{M_S}}}{{{R_J}}}$
And we know that
${R_J} = \dfrac{{{T_J}{V_J}}}{{2\pi }}$
$\Rightarrow{V_J}^2 = \dfrac{{G{M_S}}}{{{R_J}}} = \dfrac{{G{M_S}}}{{\dfrac{{T{V_J}}}{{2\pi }}}} \\$
$\Rightarrow{V_J}^3 = \dfrac{{G{M_S}2\pi }}{{{T_J}}} \\$
$\Rightarrow{V_J} = {\left( {\dfrac{{G{M_S}2\pi }}{{{T_J}}}} \right)^{1/3}} \\$
In heliocentric reference frame-
${T_J} = 12{T_E}$
$\Rightarrow{T_J} = 12$ years
Therefore,
${V_J} = {\left( {\dfrac{{6.67 \times {{10}^{ - 11}} \times 1.98 \times {{10}^{30}} \times 2\pi }}
{{12 \times 365 \times 24 \times 3600}}} \right)^{1/3}} \\$
$\Rightarrow{V_J}= 12989.08\,m/s \\$
$\Rightarrow{V_J}= 12.98\,km/s \\$
Therefore, acceleration of Jupiter
$\dfrac{{G{M_S}}}{{{R_J}^2}} \\$
$\Rightarrow \dfrac{{G{M_S}}}{{{{\left( {\dfrac{{T{V_J}}}{{2\pi }}} \right)}^2}}} \\$
$\Rightarrow \dfrac{{4{\pi ^2}{M_S}}}{{{T^2}{V_J}^2}} \\$
$\Rightarrow \dfrac{{{{\left( {2\pi } \right)}^2}G{M_S}}}{{{T^2}
{{\left( {\dfrac{{2\pi G{M_S}}}{{{T_S}}}} \right)}^{1/3}}}} \\$
$\Rightarrow\dfrac{{{{\left( {2\pi } \right)}^{5/3}}{{\left( {G{M_S}} \right)}^{2/3}}}}
{{{T_J}^{5/3}}} \\$
$\therefore 2.15 \times {10^{ - 4}}m/{s^2} \\$
Hence, option C is correct.
Additional information:
Heliocentrism is a cosmical paradigm in which the Sun, while the Earth and other bodies revolve around it, is believed to lie at or near a focal point (e.g. of the solar system or the universe).
Note:In this solution we have to be very careful while putting the values in each and every equation as putting wrong values will lead to a different answer. Also, the time period and radius values cannot be mixed up.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

