
The integration of $\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}} }}} dx$ is equal to:
$\left( A \right)$ $\sqrt {1 + {x^2}} \ln \left( {x + \sqrt {1 + {x^2}} } \right) - x + c$ $\left( B \right)$ $\dfrac{x}{2}.{\ln ^2}\left( {x + \sqrt {1 + {x^2}} } \right) - \dfrac{x}{{\sqrt {1 + {x^2}} }} + c$
$\left( C \right)$ $\dfrac{x}{2}.{\ln ^2}\left( {x + \sqrt {1 + {x^2}} } \right) + \dfrac{x}{{\sqrt {1 + {x^2}} }} + c$ $\left( D \right)$ $\sqrt {1 + {x^2}} \ln \left( {x + \sqrt {1 + {x^2}} } \right) + x + c$
Answer
595.8k+ views
Hint: In these types of functions we will try our best to make the integral in simplest form and this can be done by method i.e. rationalization and substitution. Generally we will do substitution so that one function would become derivative of another, so both can be substituted at the same time.
Complete step by step solution:
Given, $\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}} }}} dx$
Now, we will substitute $x$with $\tan \theta $
So, let $x = \tan \theta $
So we get,
$dx = {\sec ^2}\theta d\theta $
And substitute this to the equation we get
$ = \int {\tan \theta .\dfrac{{\ln \left( {\tan \theta + \sqrt {1 + {{\tan }^2}\theta } } \right)}}{{\sqrt {1 + {{\tan }^2}\theta } }}} \times {\sec ^2}\theta d\theta $
We can know that, $1 + {\tan ^2}\theta = {\sec ^2}\theta $
$
\sqrt {1 + {{\tan }^2}\theta } = \sqrt {{{\sec }^2}\theta } \\
\sqrt {1 + {{\tan }^2}\theta } = \sec \theta \\
$
So when we put it to the equation we get,
$ = = \int {\tan \theta .\dfrac{{\ln \left( {\tan \theta + \sec \theta } \right)}}{{\sec \theta }}} \times {\sec ^2}\theta d\theta $
$ = \int {\tan \theta .\ln \left( {\tan \theta + \sec \theta } \right)} .\sec \theta d\theta $
$ = \int {\sec \theta \times \tan \theta \times \ln \left( {\tan \theta + \sec \theta } \right)} d\theta $
Now, we will apply Integration by parts
Our first function $ = \ln \left( {\tan \theta + \sec \theta } \right)$
Second function $ = \sec \theta .\tan \theta $
We know $\int {\sec \theta .\tan \theta } d\theta = \sec \theta $
Now we put it to the equation, $\ln \left( {\tan \theta + \sec \theta } \right) \times \int {\sec \theta .\tan \theta d} \theta - \int {\dfrac{{d\left( {\ln \left( {\tan \theta + \sec \theta } \right)} \right)}}{{d\theta }}\int {\sec \theta .\tan \theta d\theta } } $
$ = $$\ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {\dfrac{1}{{\tan \theta + \sec \theta }} \times \left( {{{\sec }^2}\theta + \sec \theta \tan \theta } \right)} \times \sec \theta d\theta $
$ = \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {\dfrac{1}{{\left( {\tan \theta + \sec \theta } \right)}} \times \sec \theta \left( {\sec \theta + \tan \theta } \right)} \times \sec \theta d\theta $
$ = \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {{{\sec }^2}} \theta d\theta $
$ = \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \tan \theta + c$
We get our answer only when we replace $\theta $in terms of $x$
Now replace $\theta $ in term of $x$
$\sqrt {1 + {x^2}} \ln \left( {x + \sqrt {1 + {x^2}} } \right) - x + c$
This is the correct answer.
So, the correct option is $A$.
Note: Generally one can make mistakes during the substitution of $dx,dy$etc. So be careful during substitution. Always converts the final answer after substitution into the same variable as it was given in the question.
Complete step by step solution:
Given, $\int {x.\dfrac{{\ln \left( {x + \sqrt {1 + {x^2}} } \right)}}{{\sqrt {1 + {x^2}} }}} dx$
Now, we will substitute $x$with $\tan \theta $
So, let $x = \tan \theta $
So we get,
$dx = {\sec ^2}\theta d\theta $
And substitute this to the equation we get
$ = \int {\tan \theta .\dfrac{{\ln \left( {\tan \theta + \sqrt {1 + {{\tan }^2}\theta } } \right)}}{{\sqrt {1 + {{\tan }^2}\theta } }}} \times {\sec ^2}\theta d\theta $
We can know that, $1 + {\tan ^2}\theta = {\sec ^2}\theta $
$
\sqrt {1 + {{\tan }^2}\theta } = \sqrt {{{\sec }^2}\theta } \\
\sqrt {1 + {{\tan }^2}\theta } = \sec \theta \\
$
So when we put it to the equation we get,
$ = = \int {\tan \theta .\dfrac{{\ln \left( {\tan \theta + \sec \theta } \right)}}{{\sec \theta }}} \times {\sec ^2}\theta d\theta $
$ = \int {\tan \theta .\ln \left( {\tan \theta + \sec \theta } \right)} .\sec \theta d\theta $
$ = \int {\sec \theta \times \tan \theta \times \ln \left( {\tan \theta + \sec \theta } \right)} d\theta $
Now, we will apply Integration by parts
Our first function $ = \ln \left( {\tan \theta + \sec \theta } \right)$
Second function $ = \sec \theta .\tan \theta $
We know $\int {\sec \theta .\tan \theta } d\theta = \sec \theta $
Now we put it to the equation, $\ln \left( {\tan \theta + \sec \theta } \right) \times \int {\sec \theta .\tan \theta d} \theta - \int {\dfrac{{d\left( {\ln \left( {\tan \theta + \sec \theta } \right)} \right)}}{{d\theta }}\int {\sec \theta .\tan \theta d\theta } } $
$ = $$\ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {\dfrac{1}{{\tan \theta + \sec \theta }} \times \left( {{{\sec }^2}\theta + \sec \theta \tan \theta } \right)} \times \sec \theta d\theta $
$ = \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {\dfrac{1}{{\left( {\tan \theta + \sec \theta } \right)}} \times \sec \theta \left( {\sec \theta + \tan \theta } \right)} \times \sec \theta d\theta $
$ = \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \int {{{\sec }^2}} \theta d\theta $
$ = \ln \left( {\tan \theta + \sec \theta } \right) \times \sec \theta - \tan \theta + c$
We get our answer only when we replace $\theta $in terms of $x$
Now replace $\theta $ in term of $x$
$\sqrt {1 + {x^2}} \ln \left( {x + \sqrt {1 + {x^2}} } \right) - x + c$
This is the correct answer.
So, the correct option is $A$.
Note: Generally one can make mistakes during the substitution of $dx,dy$etc. So be careful during substitution. Always converts the final answer after substitution into the same variable as it was given in the question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

