
The integral $\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\}dx}$ is equal to
A. 0
B. $\dfrac{\pi }{2}$
C. $\dfrac{3\pi }{2}$
D. $-\dfrac{\pi }{2}$
Answer
543.3k+ views
Hint: We first use the concept of inverse trigonometric functions and formulas like ${{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}x$ and ${{\sin }^{-1}}y+{{\cos }^{-1}}y=\dfrac{\pi }{2}$. We use these formulas to simplify the given equation $\left( {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right)$. Then we use the definite integral formulas of $\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$ for even function. We find the solution.
Complete step by step solution:
We have been given an equation for integral. We first simplify the equation.
We have ${{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right)$.
We know that ${{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}x$.
We have that ${{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right)=\pi -{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right)$.
Replacing we get ${{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right)={{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-\pi +{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right)$.
We also have the identity that ${{\sin }^{-1}}y+{{\cos }^{-1}}y=\dfrac{\pi }{2}$.
Therefore, ${{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-\pi +{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right)=\dfrac{\pi }{2}-\pi =-\dfrac{\pi }{2}$.
Now we complete the integral
$\begin{align}
& \int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\}dx} \\
& =\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\{ -\dfrac{\pi }{2} \right\}dx} \\
\end{align}$
Now we use the concept of definite integral where $\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$ if the function is even function and $\int\limits_{-a}^{a}{f\left( x \right)dx}=0$ if the function is odd function.
For our integral the function is even. So, $-\dfrac{\pi }{2}\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{dx}=-\pi \int\limits_{0}^{\dfrac{1}{2}}{dx}=-\pi \left[ x \right]_{0}^{\dfrac{1}{2}}=\dfrac{-\pi }{2}$.
The integral $\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\}dx}$ is $\dfrac{-\pi }{2}$.
The correct option is D.
Note: We need to remember that we can also change the variable of the function where we take $x=\sin \alpha $ and $x=\cos \beta $ for different equations. We simplify the equation and find differential forms to find the solution.
Complete step by step solution:
We have been given an equation for integral. We first simplify the equation.
We have ${{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right)$.
We know that ${{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}x$.
We have that ${{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right)=\pi -{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right)$.
Replacing we get ${{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right)={{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-\pi +{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right)$.
We also have the identity that ${{\sin }^{-1}}y+{{\cos }^{-1}}y=\dfrac{\pi }{2}$.
Therefore, ${{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-\pi +{{\cos }^{-1}}\left( 3x-4{{x}^{3}} \right)=\dfrac{\pi }{2}-\pi =-\dfrac{\pi }{2}$.
Now we complete the integral
$\begin{align}
& \int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\}dx} \\
& =\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\{ -\dfrac{\pi }{2} \right\}dx} \\
\end{align}$
Now we use the concept of definite integral where $\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$ if the function is even function and $\int\limits_{-a}^{a}{f\left( x \right)dx}=0$ if the function is odd function.
For our integral the function is even. So, $-\dfrac{\pi }{2}\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{dx}=-\pi \int\limits_{0}^{\dfrac{1}{2}}{dx}=-\pi \left[ x \right]_{0}^{\dfrac{1}{2}}=\dfrac{-\pi }{2}$.
The integral $\int\limits_{-\dfrac{1}{2}}^{\dfrac{1}{2}}{\left\{ {{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)-{{\cos }^{-1}}\left( 4{{x}^{3}}-3x \right) \right\}dx}$ is $\dfrac{-\pi }{2}$.
The correct option is D.
Note: We need to remember that we can also change the variable of the function where we take $x=\sin \alpha $ and $x=\cos \beta $ for different equations. We simplify the equation and find differential forms to find the solution.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

