
The integral \[\int{\dfrac{dx}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}\] is equal to (where c is a constant of integration):
\[\begin{align}
& \left( \text{a} \right)\text{ }-2\sqrt{\dfrac{1+\sqrt{x}}{1-\sqrt{x}}}+c \\
& \left( \text{b} \right)\text{ }-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+c \\
& \left( \text{c} \right)\text{ }2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\
& \left( \text{d} \right)\text{ }-\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+c \\
\end{align}\]
Answer
556.8k+ views
Hint: Put \[\sqrt{x}=\sin \theta \], squaring on both sides we will get \[x={{\sin }^{2}}\theta \], substitute these values in the integral. Use basic integral formulae to solve the integral. After getting the simplified integral, replace \[\sin \theta \] by \[\sqrt{x}\].
Complete step-by-step solution:
Given the integral is,
\[\int{\dfrac{1}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}.dx-(1)\]
Let us consider,
\[\sqrt{x}=\sin \theta \].
Now squaring on both sides we get,
\[x={{\sin }^{2}}\theta \]
Differentiating it, we get,
\[dx=2\sin \theta \cos \theta .d\theta \]
Putting the value of \[\sqrt{x},x\] and \[dx\] in equation (1), we get
\[I=\int{\dfrac{2\sin \theta \cos \theta d\theta }{\left( 1+\sin \theta \right)\sqrt{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }}}\]
Take \[\left( {{\sin }^{2}}\theta \right)\] common from the square root, we get
\[I=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \sqrt{1-{{\sin }^{2}}\theta }}}\]
We know, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \], so we get
\[I=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \cos \theta }}\]
Cancel out \[\left( \sin \theta .\cos \theta \right)\] from numerator & denominator.
\[=\int{\dfrac{2.d\theta }{1+\sin \theta }=2\int{\dfrac{d\theta }{1+\sin \theta }}}\]
Multiply \[\left( 1-\sin \theta \right)\] on numerator and denominator.
\[=2\int{\dfrac{\left( 1-\sin \theta \right)d\theta }{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}}\]
We know \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
\[\begin{align}
& \Rightarrow I=2\int{\dfrac{\left( 1-\sin \theta \right)d}{1-{{\sin }^{2}}\theta }}=2\int{\dfrac{1-\sin \theta }{{{\cos }^{2}}\theta }d\theta } \\
& \Rightarrow 2\int{\left( \dfrac{1}{{{\cos }^{2}}\theta }-\dfrac{\sin \theta }{{{\cos }^{2}}\theta } \right)d\theta } \\
\end{align}\]
We know, \[\dfrac{1}{\cos \theta }=\sec \theta \Rightarrow \dfrac{1}{{{\cos }^{2}}\theta }={{\sec }^{2}}\theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta \], so above equation can be written as,
\[\begin{align}
& =2\int{\left( {{\sec }^{2}}\theta -\tan \theta \sec \theta \right)d\theta } \\
& =2\int{{{\sec }^{2}}\theta .d\theta }-2\int{\tan \theta \sec \theta .d\theta } \\
\end{align}\]
We know, \[\int{{{\sec }^{2}}\theta .d\theta }=\tan \theta +c,\int{\tan \theta \sec \theta }.d\theta =\sec \theta +c\], so above equation can be written as
\[\therefore I=2\left[ \tan \theta -\sec \theta \right]+c-(2)\]
We took \[\sin \theta =\sqrt{x}\]and \[x={{\sin }^{2}}\theta \]
So we get,
\[\begin{align}
& \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-x} \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta }=\dfrac{\sqrt{x}}{\sqrt{1-x}} \\
& \sec \theta =\dfrac{1}{\cos \theta }=\dfrac{1}{\sqrt{1-x}} \\
\end{align}\]
So the equation (2) can be written as,
\[\begin{align}
& I=2\left[ \dfrac{\sqrt{x}}{\sqrt{1-x}}-\dfrac{1}{\sqrt{1-x}} \right]+c \\
& I=2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\
\end{align}\]
Hence, the correct option is (d).
Note: By putting \[\sqrt{x}=\cos \theta \], we cannot find the required solution. Therefore, put \[\sqrt{x}=\sin \theta \] to solve the integral. You should remember the basic integration formulas, which are required for the solution. You can solve most of the steps using basic identities and functions. However, to get the final answer you need integration formulas.
Complete step-by-step solution:
Given the integral is,
\[\int{\dfrac{1}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}.dx-(1)\]
Let us consider,
\[\sqrt{x}=\sin \theta \].
Now squaring on both sides we get,
\[x={{\sin }^{2}}\theta \]
Differentiating it, we get,
\[dx=2\sin \theta \cos \theta .d\theta \]
Putting the value of \[\sqrt{x},x\] and \[dx\] in equation (1), we get
\[I=\int{\dfrac{2\sin \theta \cos \theta d\theta }{\left( 1+\sin \theta \right)\sqrt{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }}}\]
Take \[\left( {{\sin }^{2}}\theta \right)\] common from the square root, we get
\[I=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \sqrt{1-{{\sin }^{2}}\theta }}}\]
We know, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \], so we get
\[I=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \cos \theta }}\]
Cancel out \[\left( \sin \theta .\cos \theta \right)\] from numerator & denominator.
\[=\int{\dfrac{2.d\theta }{1+\sin \theta }=2\int{\dfrac{d\theta }{1+\sin \theta }}}\]
Multiply \[\left( 1-\sin \theta \right)\] on numerator and denominator.
\[=2\int{\dfrac{\left( 1-\sin \theta \right)d\theta }{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}}\]
We know \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
\[\begin{align}
& \Rightarrow I=2\int{\dfrac{\left( 1-\sin \theta \right)d}{1-{{\sin }^{2}}\theta }}=2\int{\dfrac{1-\sin \theta }{{{\cos }^{2}}\theta }d\theta } \\
& \Rightarrow 2\int{\left( \dfrac{1}{{{\cos }^{2}}\theta }-\dfrac{\sin \theta }{{{\cos }^{2}}\theta } \right)d\theta } \\
\end{align}\]
We know, \[\dfrac{1}{\cos \theta }=\sec \theta \Rightarrow \dfrac{1}{{{\cos }^{2}}\theta }={{\sec }^{2}}\theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta \], so above equation can be written as,
\[\begin{align}
& =2\int{\left( {{\sec }^{2}}\theta -\tan \theta \sec \theta \right)d\theta } \\
& =2\int{{{\sec }^{2}}\theta .d\theta }-2\int{\tan \theta \sec \theta .d\theta } \\
\end{align}\]
We know, \[\int{{{\sec }^{2}}\theta .d\theta }=\tan \theta +c,\int{\tan \theta \sec \theta }.d\theta =\sec \theta +c\], so above equation can be written as
\[\therefore I=2\left[ \tan \theta -\sec \theta \right]+c-(2)\]
We took \[\sin \theta =\sqrt{x}\]and \[x={{\sin }^{2}}\theta \]
So we get,
\[\begin{align}
& \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-x} \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta }=\dfrac{\sqrt{x}}{\sqrt{1-x}} \\
& \sec \theta =\dfrac{1}{\cos \theta }=\dfrac{1}{\sqrt{1-x}} \\
\end{align}\]
So the equation (2) can be written as,
\[\begin{align}
& I=2\left[ \dfrac{\sqrt{x}}{\sqrt{1-x}}-\dfrac{1}{\sqrt{1-x}} \right]+c \\
& I=2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\
\end{align}\]
Hence, the correct option is (d).
Note: By putting \[\sqrt{x}=\cos \theta \], we cannot find the required solution. Therefore, put \[\sqrt{x}=\sin \theta \] to solve the integral. You should remember the basic integration formulas, which are required for the solution. You can solve most of the steps using basic identities and functions. However, to get the final answer you need integration formulas.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

