
The integral \[\int{\dfrac{dx}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}\] is equal to (where c is a constant of integration):
\[\begin{align}
& \left( \text{a} \right)\text{ }-2\sqrt{\dfrac{1+\sqrt{x}}{1-\sqrt{x}}}+c \\
& \left( \text{b} \right)\text{ }-2\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+c \\
& \left( \text{c} \right)\text{ }2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\
& \left( \text{d} \right)\text{ }-\sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}}+c \\
\end{align}\]
Answer
481.5k+ views
Hint: Put \[\sqrt{x}=\sin \theta \], squaring on both sides we will get \[x={{\sin }^{2}}\theta \], substitute these values in the integral. Use basic integral formulae to solve the integral. After getting the simplified integral, replace \[\sin \theta \] by \[\sqrt{x}\].
Complete step-by-step solution:
Given the integral is,
\[\int{\dfrac{1}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}.dx-(1)\]
Let us consider,
\[\sqrt{x}=\sin \theta \].
Now squaring on both sides we get,
\[x={{\sin }^{2}}\theta \]
Differentiating it, we get,
\[dx=2\sin \theta \cos \theta .d\theta \]
Putting the value of \[\sqrt{x},x\] and \[dx\] in equation (1), we get
\[I=\int{\dfrac{2\sin \theta \cos \theta d\theta }{\left( 1+\sin \theta \right)\sqrt{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }}}\]
Take \[\left( {{\sin }^{2}}\theta \right)\] common from the square root, we get
\[I=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \sqrt{1-{{\sin }^{2}}\theta }}}\]
We know, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \], so we get
\[I=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \cos \theta }}\]
Cancel out \[\left( \sin \theta .\cos \theta \right)\] from numerator & denominator.
\[=\int{\dfrac{2.d\theta }{1+\sin \theta }=2\int{\dfrac{d\theta }{1+\sin \theta }}}\]
Multiply \[\left( 1-\sin \theta \right)\] on numerator and denominator.
\[=2\int{\dfrac{\left( 1-\sin \theta \right)d\theta }{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}}\]
We know \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
\[\begin{align}
& \Rightarrow I=2\int{\dfrac{\left( 1-\sin \theta \right)d}{1-{{\sin }^{2}}\theta }}=2\int{\dfrac{1-\sin \theta }{{{\cos }^{2}}\theta }d\theta } \\
& \Rightarrow 2\int{\left( \dfrac{1}{{{\cos }^{2}}\theta }-\dfrac{\sin \theta }{{{\cos }^{2}}\theta } \right)d\theta } \\
\end{align}\]
We know, \[\dfrac{1}{\cos \theta }=\sec \theta \Rightarrow \dfrac{1}{{{\cos }^{2}}\theta }={{\sec }^{2}}\theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta \], so above equation can be written as,
\[\begin{align}
& =2\int{\left( {{\sec }^{2}}\theta -\tan \theta \sec \theta \right)d\theta } \\
& =2\int{{{\sec }^{2}}\theta .d\theta }-2\int{\tan \theta \sec \theta .d\theta } \\
\end{align}\]
We know, \[\int{{{\sec }^{2}}\theta .d\theta }=\tan \theta +c,\int{\tan \theta \sec \theta }.d\theta =\sec \theta +c\], so above equation can be written as
\[\therefore I=2\left[ \tan \theta -\sec \theta \right]+c-(2)\]
We took \[\sin \theta =\sqrt{x}\]and \[x={{\sin }^{2}}\theta \]
So we get,
\[\begin{align}
& \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-x} \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta }=\dfrac{\sqrt{x}}{\sqrt{1-x}} \\
& \sec \theta =\dfrac{1}{\cos \theta }=\dfrac{1}{\sqrt{1-x}} \\
\end{align}\]
So the equation (2) can be written as,
\[\begin{align}
& I=2\left[ \dfrac{\sqrt{x}}{\sqrt{1-x}}-\dfrac{1}{\sqrt{1-x}} \right]+c \\
& I=2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\
\end{align}\]
Hence, the correct option is (d).
Note: By putting \[\sqrt{x}=\cos \theta \], we cannot find the required solution. Therefore, put \[\sqrt{x}=\sin \theta \] to solve the integral. You should remember the basic integration formulas, which are required for the solution. You can solve most of the steps using basic identities and functions. However, to get the final answer you need integration formulas.
Complete step-by-step solution:
Given the integral is,
\[\int{\dfrac{1}{\left( 1+\sqrt{x} \right)\sqrt{x-{{x}^{2}}}}}.dx-(1)\]
Let us consider,
\[\sqrt{x}=\sin \theta \].
Now squaring on both sides we get,
\[x={{\sin }^{2}}\theta \]
Differentiating it, we get,
\[dx=2\sin \theta \cos \theta .d\theta \]
Putting the value of \[\sqrt{x},x\] and \[dx\] in equation (1), we get
\[I=\int{\dfrac{2\sin \theta \cos \theta d\theta }{\left( 1+\sin \theta \right)\sqrt{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }}}\]
Take \[\left( {{\sin }^{2}}\theta \right)\] common from the square root, we get
\[I=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \sqrt{1-{{\sin }^{2}}\theta }}}\]
We know, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \], so we get
\[I=\int{\dfrac{2\sin \theta \cos \theta .d\theta }{\left( 1+\sin \theta \right)\sin \theta \cos \theta }}\]
Cancel out \[\left( \sin \theta .\cos \theta \right)\] from numerator & denominator.
\[=\int{\dfrac{2.d\theta }{1+\sin \theta }=2\int{\dfrac{d\theta }{1+\sin \theta }}}\]
Multiply \[\left( 1-\sin \theta \right)\] on numerator and denominator.
\[=2\int{\dfrac{\left( 1-\sin \theta \right)d\theta }{\left( 1+\sin \theta \right)\left( 1-\sin \theta \right)}}\]
We know \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
\[\begin{align}
& \Rightarrow I=2\int{\dfrac{\left( 1-\sin \theta \right)d}{1-{{\sin }^{2}}\theta }}=2\int{\dfrac{1-\sin \theta }{{{\cos }^{2}}\theta }d\theta } \\
& \Rightarrow 2\int{\left( \dfrac{1}{{{\cos }^{2}}\theta }-\dfrac{\sin \theta }{{{\cos }^{2}}\theta } \right)d\theta } \\
\end{align}\]
We know, \[\dfrac{1}{\cos \theta }=\sec \theta \Rightarrow \dfrac{1}{{{\cos }^{2}}\theta }={{\sec }^{2}}\theta ,\dfrac{\sin \theta }{\cos \theta }=\tan \theta \], so above equation can be written as,
\[\begin{align}
& =2\int{\left( {{\sec }^{2}}\theta -\tan \theta \sec \theta \right)d\theta } \\
& =2\int{{{\sec }^{2}}\theta .d\theta }-2\int{\tan \theta \sec \theta .d\theta } \\
\end{align}\]
We know, \[\int{{{\sec }^{2}}\theta .d\theta }=\tan \theta +c,\int{\tan \theta \sec \theta }.d\theta =\sec \theta +c\], so above equation can be written as
\[\therefore I=2\left[ \tan \theta -\sec \theta \right]+c-(2)\]
We took \[\sin \theta =\sqrt{x}\]and \[x={{\sin }^{2}}\theta \]
So we get,
\[\begin{align}
& \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-x} \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta }=\dfrac{\sqrt{x}}{\sqrt{1-x}} \\
& \sec \theta =\dfrac{1}{\cos \theta }=\dfrac{1}{\sqrt{1-x}} \\
\end{align}\]
So the equation (2) can be written as,
\[\begin{align}
& I=2\left[ \dfrac{\sqrt{x}}{\sqrt{1-x}}-\dfrac{1}{\sqrt{1-x}} \right]+c \\
& I=2\left[ \dfrac{\sqrt{x}-1}{\sqrt{1-x}} \right]+c \\
\end{align}\]
Hence, the correct option is (d).
Note: By putting \[\sqrt{x}=\cos \theta \], we cannot find the required solution. Therefore, put \[\sqrt{x}=\sin \theta \] to solve the integral. You should remember the basic integration formulas, which are required for the solution. You can solve most of the steps using basic identities and functions. However, to get the final answer you need integration formulas.
Recently Updated Pages
Master Class 4 Maths: Engaging Questions & Answers for Success

Master Class 4 English: Engaging Questions & Answers for Success

Master Class 4 Science: Engaging Questions & Answers for Success

Class 4 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
