
The integral \[\int {({x^{7m}} + {x^{2m}} + {x^m}){{(2{x^{6m}} + 7{x^m} + 14)}^{\dfrac{1}{m}}}} .dx\] equal to ____
A.\[\dfrac{{{{({x^{7m}} + {x^{2m}} + {x^m})}^{m + 1}}}}{{m + 1}} + c\]
B.\[\dfrac{1}{{14(m + 1)}}.{\left( {2{x^{7m}} + 7{x^{2m}} + 14{x^m}} \right)^{\dfrac{{1 + m}}{m}}} + c\]
C.\[{\left( {2{x^{7m}} + 7{x^{2m}} + 14{x^m}} \right)^{\dfrac{{1 + m}}{m}}} + c\]
D.\[\dfrac{1}{{14(m + 1)}}.\left( {2{x^{7m}} + 7{x^{2m}} + 14{x^m}} \right) + c\]
Answer
567k+ views
Hint: We know the integration formula, \[\int {{x^n}.dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]. We simplify the given integral then by using the substitution method we can solve this. The substitution method is used when an integral contains some function and its derivative. After solving by substitution method we keep the answer in terms of ‘x’ only.
Complete step-by-step answer:
Given, \[\int {({x^{7m}} + {x^{2m}} + {x^m}){{(2{x^{6m}} + 7{x^m} + 14)}^{\dfrac{1}{m}}}} .dx\]
Now multiplying and divide by \[{x^m}\]inside the second term, we have:
\[ \Rightarrow \int {({x^{7m}} + {x^{2m}} + {x^m}){{\left( {\dfrac{{{x^m}}}{{{x^m}}} \times (2{x^{6m}} + 7{x^m} + 14)} \right)}^{\dfrac{1}{m}}}} .dx\]
Multiplying we have,
\[ \Rightarrow \int {({x^{7m}} + {x^{2m}} + {x^m}){{\left( {\dfrac{{(2{x^{6m}} \times {x^m} + 7{x^m} \times {x^m} + 14 \times {x^m})}}{{{x^m}}}} \right)}^{\dfrac{1}{m}}}} .dx\]
Since the bases are same then we add it’s powers, \[{a^m}.{a^n} = {a^{m + n}}\] and we know \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\], then we get,
\[ \Rightarrow \int {({x^{7m}} + {x^{2m}} + {x^m})\dfrac{{{{(2{x^{6m + m}} + 7{x^{m + m}} + 14{x^m})}^{\dfrac{1}{m}}}}}{{{{({x^m})}^{\dfrac{1}{m}}}}}} .dx\]
\[ \Rightarrow \int {({x^{7m}} + {x^{2m}} + {x^m})\dfrac{{{{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}}}{{(x)}}} .dx\]
Rearranging we get,
\[ \Rightarrow \int {\dfrac{{({x^{7m}} + {x^{2m}} + {x^m})}}{x}{{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}} .dx\]
\[ \Rightarrow \int {{x^{ - 1}}({x^{7m}} + {x^{2m}} + {x^m}){{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}} .dx\]
Again we use \[{a^m}.{a^n} = {a^{m + n}}\], we get:
\[ \Rightarrow \int {({x^{7m - 1}} + {x^{2m - 1}} + {x^{m - 1}}){{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}} .dx{\text{ - - - - - - - (1)}}\]
We apply the substitution method.
That is, let \[2{x^{7m}} + 7{x^{2m}} + 14{x^m} = t{\text{ - - - - - - - (2)}}\]
Differentiating with respect to ‘x’ we have,
\[ \Rightarrow (14m{x^{7m - 1}} + 14m{x^{2m - 1}} + 14m{x^{m - 1}})dx = dt\]
Taking 14m as common term,
\[ \Rightarrow 14m({x^{7m - 1}} + {x^{2m - 1}} + {x^{m - 1}})dx = dt\]
Divided by 14m on the both side we have,
\[ \Rightarrow ({x^{7m - 1}} + {x^{2m - 1}} + {x^{m - 1}})dx = \dfrac{{dt}}{{14m}}{\text{ - - - - - - (3)}}\]
From (1) we have
\[ \Rightarrow \int {({x^{7m - 1}} + {x^{2m - 1}} + {x^{m - 1}}){{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}} .dx\]
Using equation (3) we have,
\[ \Rightarrow \int {\dfrac{{dt}}{{14m}}{{(t)}^{\dfrac{1}{m}}}} \]
\[ \Rightarrow \int {\dfrac{1}{{14m}}{{(t)}^{\dfrac{1}{m}}}} .dt\]
Taking constant outside we have,
\[ \Rightarrow \dfrac{1}{{14m}}\int {{{(t)}^{\dfrac{1}{m}}}} .dt\]
Integrating with respect to ‘t’, we get:
\[ \Rightarrow \dfrac{1}{{14m}} \times \left( {\dfrac{{{t^{\dfrac{1}{m} + 1}}}}{{\dfrac{1}{m} + 1}}} \right) + c\]
Where, c is the integration constant and taking L.C.M. we have:
\[ \Rightarrow \dfrac{1}{{14m}} \times \left( {\dfrac{{{t^{\dfrac{{1 + m}}{m}}}}}{{\dfrac{{1 + m}}{m}}}} \right) + c\]
Rearranging we have,
\[ \Rightarrow \dfrac{m}{{14m(m + 1)}}.{t^{\dfrac{{1 + m}}{m}}} + c\]
Cancelling m we have,
\[ \Rightarrow \dfrac{1}{{14(m + 1)}}.{t^{\dfrac{{1 + m}}{m}}} + c\]
Now we need to keep the answer in terms of ‘x’ only,
From equation (2) we have \[2{x^{7m}} + 7{x^{2m}} + 14{x^m} = t\]. Now substituting value of ‘t’ we get:
\[ \Rightarrow \dfrac{1}{{14(m + 1)}}.{\left( {2{x^{7m}} + 7{x^{2m}} + 14{x^m}} \right)^{\dfrac{{1 + m}}{m}}} + c\]
So, the correct answer is “Option B”.
Note: We know that in indefinite integral we have integral constant but in definite integral we do not have an integral constant. By using the substitution method we can easily solve the integral as done above. In case of definite integral while using substitution methods limits also change, careful about that part.
Complete step-by-step answer:
Given, \[\int {({x^{7m}} + {x^{2m}} + {x^m}){{(2{x^{6m}} + 7{x^m} + 14)}^{\dfrac{1}{m}}}} .dx\]
Now multiplying and divide by \[{x^m}\]inside the second term, we have:
\[ \Rightarrow \int {({x^{7m}} + {x^{2m}} + {x^m}){{\left( {\dfrac{{{x^m}}}{{{x^m}}} \times (2{x^{6m}} + 7{x^m} + 14)} \right)}^{\dfrac{1}{m}}}} .dx\]
Multiplying we have,
\[ \Rightarrow \int {({x^{7m}} + {x^{2m}} + {x^m}){{\left( {\dfrac{{(2{x^{6m}} \times {x^m} + 7{x^m} \times {x^m} + 14 \times {x^m})}}{{{x^m}}}} \right)}^{\dfrac{1}{m}}}} .dx\]
Since the bases are same then we add it’s powers, \[{a^m}.{a^n} = {a^{m + n}}\] and we know \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\], then we get,
\[ \Rightarrow \int {({x^{7m}} + {x^{2m}} + {x^m})\dfrac{{{{(2{x^{6m + m}} + 7{x^{m + m}} + 14{x^m})}^{\dfrac{1}{m}}}}}{{{{({x^m})}^{\dfrac{1}{m}}}}}} .dx\]
\[ \Rightarrow \int {({x^{7m}} + {x^{2m}} + {x^m})\dfrac{{{{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}}}{{(x)}}} .dx\]
Rearranging we get,
\[ \Rightarrow \int {\dfrac{{({x^{7m}} + {x^{2m}} + {x^m})}}{x}{{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}} .dx\]
\[ \Rightarrow \int {{x^{ - 1}}({x^{7m}} + {x^{2m}} + {x^m}){{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}} .dx\]
Again we use \[{a^m}.{a^n} = {a^{m + n}}\], we get:
\[ \Rightarrow \int {({x^{7m - 1}} + {x^{2m - 1}} + {x^{m - 1}}){{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}} .dx{\text{ - - - - - - - (1)}}\]
We apply the substitution method.
That is, let \[2{x^{7m}} + 7{x^{2m}} + 14{x^m} = t{\text{ - - - - - - - (2)}}\]
Differentiating with respect to ‘x’ we have,
\[ \Rightarrow (14m{x^{7m - 1}} + 14m{x^{2m - 1}} + 14m{x^{m - 1}})dx = dt\]
Taking 14m as common term,
\[ \Rightarrow 14m({x^{7m - 1}} + {x^{2m - 1}} + {x^{m - 1}})dx = dt\]
Divided by 14m on the both side we have,
\[ \Rightarrow ({x^{7m - 1}} + {x^{2m - 1}} + {x^{m - 1}})dx = \dfrac{{dt}}{{14m}}{\text{ - - - - - - (3)}}\]
From (1) we have
\[ \Rightarrow \int {({x^{7m - 1}} + {x^{2m - 1}} + {x^{m - 1}}){{(2{x^{7m}} + 7{x^{2m}} + 14{x^m})}^{\dfrac{1}{m}}}} .dx\]
Using equation (3) we have,
\[ \Rightarrow \int {\dfrac{{dt}}{{14m}}{{(t)}^{\dfrac{1}{m}}}} \]
\[ \Rightarrow \int {\dfrac{1}{{14m}}{{(t)}^{\dfrac{1}{m}}}} .dt\]
Taking constant outside we have,
\[ \Rightarrow \dfrac{1}{{14m}}\int {{{(t)}^{\dfrac{1}{m}}}} .dt\]
Integrating with respect to ‘t’, we get:
\[ \Rightarrow \dfrac{1}{{14m}} \times \left( {\dfrac{{{t^{\dfrac{1}{m} + 1}}}}{{\dfrac{1}{m} + 1}}} \right) + c\]
Where, c is the integration constant and taking L.C.M. we have:
\[ \Rightarrow \dfrac{1}{{14m}} \times \left( {\dfrac{{{t^{\dfrac{{1 + m}}{m}}}}}{{\dfrac{{1 + m}}{m}}}} \right) + c\]
Rearranging we have,
\[ \Rightarrow \dfrac{m}{{14m(m + 1)}}.{t^{\dfrac{{1 + m}}{m}}} + c\]
Cancelling m we have,
\[ \Rightarrow \dfrac{1}{{14(m + 1)}}.{t^{\dfrac{{1 + m}}{m}}} + c\]
Now we need to keep the answer in terms of ‘x’ only,
From equation (2) we have \[2{x^{7m}} + 7{x^{2m}} + 14{x^m} = t\]. Now substituting value of ‘t’ we get:
\[ \Rightarrow \dfrac{1}{{14(m + 1)}}.{\left( {2{x^{7m}} + 7{x^{2m}} + 14{x^m}} \right)^{\dfrac{{1 + m}}{m}}} + c\]
So, the correct answer is “Option B”.
Note: We know that in indefinite integral we have integral constant but in definite integral we do not have an integral constant. By using the substitution method we can easily solve the integral as done above. In case of definite integral while using substitution methods limits also change, careful about that part.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

