
The integral $I = \int {\dfrac{{dx}}{{{{\left( {x + 1} \right)}^{3/4}} * {{\left( {x - 2} \right)}^{5/4}}}}} $ is equal to:
A.$4{\left( {\dfrac{{x + 1}}{{x - 2}}} \right)^{1/4}} + C$
B.$4{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)^{1/4}} + C$
C.$\dfrac{{ - 4}}{3}{\left( {\dfrac{{x + 1}}{{x - 2}}} \right)^{1/4}} + C$
D.$\dfrac{{ - 4}}{3}{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)^{1/4}} + C$
Answer
576.6k+ views
Hint: In mathematics, Integral equations are which an unknown function appears under an integral sign. Integration is the algebraic method to find the integral for a function at any point of graph. Hence integral is also called the anti-derivative because integration is a reverse process of differentiation. In the given question, first of all we will break the given term $\left( {x - 2} \right)$ and assume it as$t$, then put this value in the given equation and differentiate it with respect to $t$ after that integrating the obtained result we will get the answer.
Complete step-by-step answer:
Given that:
$I = \int {\dfrac{{dx}}{{{{\left( {x + 1} \right)}^{3/4}} *{{\left( {x - 2} \right)}^{5/4}}}}} $
We can write the above equation as:
$\int {\dfrac{1}{{{{\left( {x - 2} \right)}^{2/4}} * {{\left( {x + 1} \right)}^{3/4}}}}} \times \dfrac{{dx}}{{{{\left( {x - 2} \right)}^{3/4}}}}$
Here we break the term $\left( {x - 2} \right)$
Let
${\left( {x - 2} \right)^{1/4}} = t..............\left( 1 \right)$
$
\Rightarrow \left( {x - 2} \right) = {t^{4}} \\
\Rightarrow x = {t^4} + 2 \\
$
From equation one:
$
\dfrac{1}{4}{\left( {x - 2} \right)^{ - 3/4}}dx = dt \\
\Rightarrow \dfrac{{dx}}{{{{\left( {x - 2} \right)}^{ 3/4}}}} = 4dt \\
$
Integrating the above equation
We get:
$\int {\dfrac{{4dt}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{^{3/4}}}}}} $
Substitute $\dfrac{{{{\left( {{t^4} + 3} \right)}^{1/4}}}}{t} = u$ …………….. (2)
Now differentiate on both sides of the above equation:
\[
\left[ {\dfrac{{t\dfrac{1}{4}{{\left( {{t^4} + 3} \right)}^{ - 3/4}}4{t^3} - {{\left( {{t^4} + 3} \right)}^{1/4}}}}{{{t^2}}}} \right]dt = du \\
\Rightarrow \left[ {\dfrac{{{t^4}}}{{{{\left( {{t^4} + 3} \right)}^{3/4}}}} - {{\left( {{t^4} + 3} \right)}^{1/4}}} \right]/{t^2}dt = du \\
\Rightarrow \dfrac{{{t^4}\left( {{t^4} + 3} \right)}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{3/4}}}}dt = du \\
\Rightarrow \dfrac{{ - 3dt}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{3/4}}}} = du \\
\]
Substitute the value of u from equation 2
$
\dfrac{{ - 4}}{3}\int {du} \\
\Rightarrow \dfrac{{ - 4}}{3}u + C \\
$
Put the value of u from equation 2
We get:
$\dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {{t^4} + 3} \right)}^{3/4}}}}{t}} \right] + C$
Now we will put the value of t from equation 1
We get
\[
\Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x - 2} \right)}^{1/4}} + 3}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\
\Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x - 2 + 3} \right)}^{1/4}}}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\
\Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x + 1} \right)}^{1/4}}}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\
\Rightarrow \dfrac{{ - 4}}{3}\left[ {{{\left( {\dfrac{{x + 1}}{{x - 2}}} \right)}^{1/4}}} \right] + C \\
\]
Hence the correct answer is option C
Note: The given problem we have to break the equation, without this we can’t solve the equation. After that assume the common term as $t$ and integrate it with respect to$t$. Consider the outcome as $u$ and differentiate it. We have to add a constant integration symbol c and put the value of $t$ in it. Thus we get the answer.
Complete step-by-step answer:
Given that:
$I = \int {\dfrac{{dx}}{{{{\left( {x + 1} \right)}^{3/4}} *{{\left( {x - 2} \right)}^{5/4}}}}} $
We can write the above equation as:
$\int {\dfrac{1}{{{{\left( {x - 2} \right)}^{2/4}} * {{\left( {x + 1} \right)}^{3/4}}}}} \times \dfrac{{dx}}{{{{\left( {x - 2} \right)}^{3/4}}}}$
Here we break the term $\left( {x - 2} \right)$
Let
${\left( {x - 2} \right)^{1/4}} = t..............\left( 1 \right)$
$
\Rightarrow \left( {x - 2} \right) = {t^{4}} \\
\Rightarrow x = {t^4} + 2 \\
$
From equation one:
$
\dfrac{1}{4}{\left( {x - 2} \right)^{ - 3/4}}dx = dt \\
\Rightarrow \dfrac{{dx}}{{{{\left( {x - 2} \right)}^{ 3/4}}}} = 4dt \\
$
Integrating the above equation
We get:
$\int {\dfrac{{4dt}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{^{3/4}}}}}} $
Substitute $\dfrac{{{{\left( {{t^4} + 3} \right)}^{1/4}}}}{t} = u$ …………….. (2)
Now differentiate on both sides of the above equation:
\[
\left[ {\dfrac{{t\dfrac{1}{4}{{\left( {{t^4} + 3} \right)}^{ - 3/4}}4{t^3} - {{\left( {{t^4} + 3} \right)}^{1/4}}}}{{{t^2}}}} \right]dt = du \\
\Rightarrow \left[ {\dfrac{{{t^4}}}{{{{\left( {{t^4} + 3} \right)}^{3/4}}}} - {{\left( {{t^4} + 3} \right)}^{1/4}}} \right]/{t^2}dt = du \\
\Rightarrow \dfrac{{{t^4}\left( {{t^4} + 3} \right)}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{3/4}}}}dt = du \\
\Rightarrow \dfrac{{ - 3dt}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{3/4}}}} = du \\
\]
Substitute the value of u from equation 2
$
\dfrac{{ - 4}}{3}\int {du} \\
\Rightarrow \dfrac{{ - 4}}{3}u + C \\
$
Put the value of u from equation 2
We get:
$\dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {{t^4} + 3} \right)}^{3/4}}}}{t}} \right] + C$
Now we will put the value of t from equation 1
We get
\[
\Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x - 2} \right)}^{1/4}} + 3}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\
\Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x - 2 + 3} \right)}^{1/4}}}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\
\Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x + 1} \right)}^{1/4}}}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\
\Rightarrow \dfrac{{ - 4}}{3}\left[ {{{\left( {\dfrac{{x + 1}}{{x - 2}}} \right)}^{1/4}}} \right] + C \\
\]
Hence the correct answer is option C
Note: The given problem we have to break the equation, without this we can’t solve the equation. After that assume the common term as $t$ and integrate it with respect to$t$. Consider the outcome as $u$ and differentiate it. We have to add a constant integration symbol c and put the value of $t$ in it. Thus we get the answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

