
The \[\int {\dfrac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx = } \]
A. \[\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} + x + c\]
B. \[\dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + x + c\]
C. \[\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - x + c\]
D. \[\dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} - x + c\]
Answer
476.7k+ views
Hint: Firstly, We will write the numerator in terms of perfect square and then convert the numerator in such a way that some of the terms from numerator and denominator get cancelled. Like, we will write \[{x^4} + {x^2} + 1\] as \[{x^4} + 2{x^2} - {x^2} + 1\] and then combine the terms \[{x^4} + 2{x^2} + 1\] together to form a perfect square of \[{x^2} + 1\]. So that, we will get numerator to be equal to \[{({x^2} + 1)^2} - {x^2}\] and then use the formula \[{a^2} - {b^2} = (a + b)(a - b)\] to write the numerator as a product of two terms. After that, one of the terms gets cancelled with the denominator and then we will Just integrate the remaining terms with respect to \[x\].
Complete step by step answer:
\[\int {\dfrac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx = \int {\dfrac{{{x^4} + 2{x^2} - {x^2} + 1}}{{{x^2} - x + 1}}dx} } \]
Clubbing some terms together to convert it into formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \int {\dfrac{{({x^4} + 2{x^2} + 1) - {x^2}}}{{{x^2} - x + 1}}dx} \]
\[\Rightarrow \int {\dfrac{{{{({x^2} + 1)}^2} - {x^2}}}{{{x^2} - x + 1}}dx} \]
Now, using the formula \[{a^2} - {b^2} = (a + b)(a - b)\] in the numerator.
\[ \int {\dfrac{{({x^2} + 1 - x)({x^2} + 1 + x)}}{{{x^2} - x + 1}}dx} \]
Now, cancelling the term \[{x^2} - x + 1\] from numerator and denominator, we get
\[\int {\dfrac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx = \int {({x^2} + x + 1} } )dx\]
Using \[\int {(a + b + c)} dx = \int a dx + \int b dx + \int c dx\], we get
\[\int {{x^2}} dx + \int x dx + \int 1 dx\]
Using the formula \[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\] and \[\int 1 dx = x + c\] for integration, we get
\[\dfrac{{{x^{2 + 1}}}}{{2 + 1}} + \dfrac{{{x^{1 + 1}}}}{{1 + 1}} + x + c\]
\[\Rightarrow \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + x + c\]
Hence, we get
\[\int {\dfrac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx = \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + x + c} \]
Therefore, the correct option is B.
Note: Whenever the polynomial given in numerator is having greater degree than polynomial in denominator, we try to divide the and simplify the expression such that we arrive at an expression which is easy to integrate. Indefinite integrals can have multiple interconvertible answers as the values of the arbitrary constants can vary.
Complete step by step answer:
\[\int {\dfrac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx = \int {\dfrac{{{x^4} + 2{x^2} - {x^2} + 1}}{{{x^2} - x + 1}}dx} } \]
Clubbing some terms together to convert it into formula \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \int {\dfrac{{({x^4} + 2{x^2} + 1) - {x^2}}}{{{x^2} - x + 1}}dx} \]
\[\Rightarrow \int {\dfrac{{{{({x^2} + 1)}^2} - {x^2}}}{{{x^2} - x + 1}}dx} \]
Now, using the formula \[{a^2} - {b^2} = (a + b)(a - b)\] in the numerator.
\[ \int {\dfrac{{({x^2} + 1 - x)({x^2} + 1 + x)}}{{{x^2} - x + 1}}dx} \]
Now, cancelling the term \[{x^2} - x + 1\] from numerator and denominator, we get
\[\int {\dfrac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx = \int {({x^2} + x + 1} } )dx\]
Using \[\int {(a + b + c)} dx = \int a dx + \int b dx + \int c dx\], we get
\[\int {{x^2}} dx + \int x dx + \int 1 dx\]
Using the formula \[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\] and \[\int 1 dx = x + c\] for integration, we get
\[\dfrac{{{x^{2 + 1}}}}{{2 + 1}} + \dfrac{{{x^{1 + 1}}}}{{1 + 1}} + x + c\]
\[\Rightarrow \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + x + c\]
Hence, we get
\[\int {\dfrac{{{x^4} + {x^2} + 1}}{{{x^2} - x + 1}}dx = \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + x + c} \]
Therefore, the correct option is B.
Note: Whenever the polynomial given in numerator is having greater degree than polynomial in denominator, we try to divide the and simplify the expression such that we arrive at an expression which is easy to integrate. Indefinite integrals can have multiple interconvertible answers as the values of the arbitrary constants can vary.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

