
The image of a small electric bulb fixed on the wall of a room is to be obtained on the opposite wall 3m away from a means of a large convex lens. What is the maximum possible focal length of the lens required for the purpose?
Answer
577.5k+ views
Hint: To manufacture the lens of suitable power and length the lens makers use the lens maker formula. Another formula used for the lens that relates the radii of curvature, focal length, and refractive index.
Formula used:
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$ ; This is called the lens maker formula. Where f represents focal length, v is image distance and u are object distance.
Complete step by step solution:
Let object distance (u) be x and image distance (v) be y. so, according to the condition given in question. According to sign convention $u = - x$
We can write. $x + y = 3m$
From here we can find any one variable in terms of the other.
$y = 3 - x$ ………….. (1)
Let us now substitute the value in the formula $\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
$\dfrac{1}{f} = \dfrac{1}{y} + \dfrac{1}{x}$
From equation (1) we can rewrite the equation as follows.
$\dfrac{1}{f} = \dfrac{1}{{3 - x}} + \dfrac{1}{x}$
$ = \dfrac{{x + \left( {3 - x} \right)}}{{x\left( {3 - x} \right)}}$
Let us further simplify it.
$\dfrac{1}{f} = \dfrac{3}{{x\left( {3 - x} \right)}}$
$ \Rightarrow f = \dfrac{{x\left( {3 - x} \right)}}{3}$
Now, maximum possible focal length is asked. So, we will equate the first derivative of focal length f to zero to find its maximum value.
First, let us find the first derivative with respect to x.
$\dfrac{{df}}{{dx}} = \dfrac{{3 - 2x}}{3}$
Now let us equate it to zero.
$\dfrac{{df}}{{dx}} = \dfrac{{3 - 2x}}{3} = 0$
Let us further simplify it.
$3 - 2x = 0$
$ \Rightarrow x = \dfrac{3}{2}m$
Hence, for maximum focal length object distance is 3/2. Now let us substitute the value of x in equation (1).
Hence, the value of image distance y is calculated as follows.
$y = 3 - \dfrac{3}{2} = \dfrac{3}{2}m$
That means both the distance of object and image is equal.
Now let us substitute the values of x and y in formula $\dfrac{1}{f} = \dfrac{1}{y} + \dfrac{1}{x}$and calculate the maximum focal length.
$\dfrac{1}{{{f_{\max }}}} = \dfrac{1}{{\dfrac{3}{2}}} + \dfrac{1}{{\dfrac{3}{2}}}$
$ = \dfrac{2}{3} + \dfrac{2}{3}$
On further simplifying we get the following.
\[\dfrac{1}{{{f_{\max }}}} = \dfrac{4}{3}\]
\[ \Rightarrow {f_{\max }} = \dfrac{3}{4}\]
\[ = 0.75m\]
$\therefore $ Hence, maximum focal length is 0.75m.
Note:
Another direct method; to obtain a real image on the wall minimum distance between images and objects should be equal to $4f$. Where $f$ is focal length. Here,
$4f = 3m$
$ \Rightarrow f = \dfrac{3}{4}m$
Formula used:
$\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$ ; This is called the lens maker formula. Where f represents focal length, v is image distance and u are object distance.
Complete step by step solution:
Let object distance (u) be x and image distance (v) be y. so, according to the condition given in question. According to sign convention $u = - x$
We can write. $x + y = 3m$
From here we can find any one variable in terms of the other.
$y = 3 - x$ ………….. (1)
Let us now substitute the value in the formula $\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}$
$\dfrac{1}{f} = \dfrac{1}{y} + \dfrac{1}{x}$
From equation (1) we can rewrite the equation as follows.
$\dfrac{1}{f} = \dfrac{1}{{3 - x}} + \dfrac{1}{x}$
$ = \dfrac{{x + \left( {3 - x} \right)}}{{x\left( {3 - x} \right)}}$
Let us further simplify it.
$\dfrac{1}{f} = \dfrac{3}{{x\left( {3 - x} \right)}}$
$ \Rightarrow f = \dfrac{{x\left( {3 - x} \right)}}{3}$
Now, maximum possible focal length is asked. So, we will equate the first derivative of focal length f to zero to find its maximum value.
First, let us find the first derivative with respect to x.
$\dfrac{{df}}{{dx}} = \dfrac{{3 - 2x}}{3}$
Now let us equate it to zero.
$\dfrac{{df}}{{dx}} = \dfrac{{3 - 2x}}{3} = 0$
Let us further simplify it.
$3 - 2x = 0$
$ \Rightarrow x = \dfrac{3}{2}m$
Hence, for maximum focal length object distance is 3/2. Now let us substitute the value of x in equation (1).
Hence, the value of image distance y is calculated as follows.
$y = 3 - \dfrac{3}{2} = \dfrac{3}{2}m$
That means both the distance of object and image is equal.
Now let us substitute the values of x and y in formula $\dfrac{1}{f} = \dfrac{1}{y} + \dfrac{1}{x}$and calculate the maximum focal length.
$\dfrac{1}{{{f_{\max }}}} = \dfrac{1}{{\dfrac{3}{2}}} + \dfrac{1}{{\dfrac{3}{2}}}$
$ = \dfrac{2}{3} + \dfrac{2}{3}$
On further simplifying we get the following.
\[\dfrac{1}{{{f_{\max }}}} = \dfrac{4}{3}\]
\[ \Rightarrow {f_{\max }} = \dfrac{3}{4}\]
\[ = 0.75m\]
$\therefore $ Hence, maximum focal length is 0.75m.
Note:
Another direct method; to obtain a real image on the wall minimum distance between images and objects should be equal to $4f$. Where $f$ is focal length. Here,
$4f = 3m$
$ \Rightarrow f = \dfrac{3}{4}m$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

