
The heat capacity per mole of water is (R is universal gas constant)
A. 9R
B. \[\dfrac{9}{2}R\]
C. 6R
D. 5R
Answer
579.6k+ views
Hint: to solve this question we must know the definition of molar heat capacity and degree of freedom of gases and the value of degree of freedom of different type of gases should also be known us-
Molar heat capacity: it is defined as the amount of heat required to raise the temperature of one mole of gas by \[{1^ \circ }C\] (or 1K) and it is given as \[C = \dfrac{{dQ}}{{dT}}\] or \[C = \dfrac{{dU}}{{dT}}\] for one mole of gas.
Degree of freedom (f): it is the number of possible ways in which a gas molecule possesses kinetic energy. For nonlinear polyatomic gas value of degree of freedom is 6
Complete step by step solution
To find molar heat capacity we need amount of energy stored in mole of water at any temperature T as \[C = \dfrac{{dU}}{{dT}}\] the amount of energy stored by each atom in one mole of water is given as \[U = \dfrac{{fRT}}{2}\] and the total energy stored is \[U = \dfrac{{3fRT}}{2}\] as the total number of atom in water molecule is 3
For water as it is non-linear polyatomic f=6 so, \[U = \dfrac{{18}}{2}RT = 9RT\]
Now, \[C = \dfrac{{dU}}{{dT}}\] =\[\dfrac{{d(9RT)}}{{dT}} = 9R\] and hence the option A will be correct.
Note:\[dQ\] is the small amount of heat and \[dU\] is the small change in internal energy and \[U = \dfrac{{fRT}}{2}\] is the average energy of one atom of the molecule and one more thing you have to keep in your mind that \[C = \dfrac{{dQ}}{{dT}}\] is the molar heat capacity of one mole for n mole it will be \[C = \dfrac{{dQ}}{{ndT}}\]
Molar heat capacity: it is defined as the amount of heat required to raise the temperature of one mole of gas by \[{1^ \circ }C\] (or 1K) and it is given as \[C = \dfrac{{dQ}}{{dT}}\] or \[C = \dfrac{{dU}}{{dT}}\] for one mole of gas.
Degree of freedom (f): it is the number of possible ways in which a gas molecule possesses kinetic energy. For nonlinear polyatomic gas value of degree of freedom is 6
Complete step by step solution
To find molar heat capacity we need amount of energy stored in mole of water at any temperature T as \[C = \dfrac{{dU}}{{dT}}\] the amount of energy stored by each atom in one mole of water is given as \[U = \dfrac{{fRT}}{2}\] and the total energy stored is \[U = \dfrac{{3fRT}}{2}\] as the total number of atom in water molecule is 3
For water as it is non-linear polyatomic f=6 so, \[U = \dfrac{{18}}{2}RT = 9RT\]
Now, \[C = \dfrac{{dU}}{{dT}}\] =\[\dfrac{{d(9RT)}}{{dT}} = 9R\] and hence the option A will be correct.
Note:\[dQ\] is the small amount of heat and \[dU\] is the small change in internal energy and \[U = \dfrac{{fRT}}{2}\] is the average energy of one atom of the molecule and one more thing you have to keep in your mind that \[C = \dfrac{{dQ}}{{dT}}\] is the molar heat capacity of one mole for n mole it will be \[C = \dfrac{{dQ}}{{ndT}}\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

What are luminous and Non luminous objects class 10 physics CBSE

