
The given multiplication of matrices \[\cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]\] is equal to: -
(a) \[\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]\]
(b) \[\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
(c) \[\left[ \begin{matrix}
1 & 1 \\
1 & 1 \\
\end{matrix} \right]\]
(d) \[-\left[ \begin{matrix}
1 & 1 \\
1 & 1 \\
\end{matrix} \right]\]
Answer
557.4k+ views
Hint: Assume the two given matrices as matrix A and matrix B. Use the property of multiplication of a scalar with a matrix that if any number is multiplied with a matrix then every element gets multiplied with that number. Multiplied \[\cos \theta \] with A and \[\sin \theta \] with B. Now, apply the addition property of matrices. Add the \[{{a}_{11}}\] element of the first matrix with the corresponding \[{{a}_{11}}\] element of the second matrix and do the same for other elements. Simplify the terms to get the answer. Use the identity: - \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\].
Complete step-by-step solution
We have been provided with the expression: -
\[\Rightarrow \cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]\]
Let us assume: - \[\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]=A\] and \[\left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]=B\].
Now, we have to find \[\cos \theta .A+\sin \theta .B\]. Since \[\sin \theta \] and \[\cos \theta \] are scalars and we know that if any scalar is multiplied to a matric then all the elements of that matrix are multiplied by that scalar. Therefore, we have,
\[\Rightarrow \cos \theta .A=\cos \theta .\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]\]
\[\Rightarrow \cos \theta .A=\left[ \begin{matrix}
{{\cos }^{2}}\theta & \sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]\] - (1)
And \[\sin \theta .B=\sin \theta .\left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]\]
\[\Rightarrow \sin \theta .B=\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
\sin \theta \cos \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\] - (2)
Adding equations (1) and (2), we get,
\[\Rightarrow \cos \theta .A+\sin \theta .B=\left[ \begin{matrix}
{{\cos }^{2}}\theta & \sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]+\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
\sin \theta \cos \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\]
Now, applying the property of addition of two matrices which says that elements of first matrix should be added to the corresponding elements of second matrix, we get,
\[\Rightarrow \cos \theta .A+\sin \theta .B=\left[ \begin{matrix}
{{\cos }^{2}}\theta +{{\sin }^{2}}\theta & \sin \theta \cos \theta +\left( -\sin \theta \cos \theta \right) \\
-\sin \theta \cos \theta +\sin \theta \cos \theta & {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \\
\end{matrix} \right]\]
Cancelling the like terms and using the identity: - \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\], we get,
\[\Rightarrow \cos \theta .A+\sin \theta .B=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
Hence, option (b) is the correct answer.
Note: One may note that we can also solve this question by assigning some particular value to \[\theta \] like \[{{0}^{\circ }},{{90}^{\circ }}\] or \[{{45}^{\circ }}\]. We already know the values of sine and cosine functions of these angles. This process will replace trigonometric functions with their numerical values and we will be able to solve the question more easily. But remember that this process can only be applied if options are provided just like in the above question.
Complete step-by-step solution
We have been provided with the expression: -
\[\Rightarrow \cos \theta \left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]+\sin \theta \left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]\]
Let us assume: - \[\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]=A\] and \[\left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]=B\].
Now, we have to find \[\cos \theta .A+\sin \theta .B\]. Since \[\sin \theta \] and \[\cos \theta \] are scalars and we know that if any scalar is multiplied to a matric then all the elements of that matrix are multiplied by that scalar. Therefore, we have,
\[\Rightarrow \cos \theta .A=\cos \theta .\left[ \begin{matrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \\
\end{matrix} \right]\]
\[\Rightarrow \cos \theta .A=\left[ \begin{matrix}
{{\cos }^{2}}\theta & \sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]\] - (1)
And \[\sin \theta .B=\sin \theta .\left[ \begin{matrix}
\sin \theta & -\cos \theta \\
\cos \theta & \sin \theta \\
\end{matrix} \right]\]
\[\Rightarrow \sin \theta .B=\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
\sin \theta \cos \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\] - (2)
Adding equations (1) and (2), we get,
\[\Rightarrow \cos \theta .A+\sin \theta .B=\left[ \begin{matrix}
{{\cos }^{2}}\theta & \sin \theta \cos \theta \\
-\sin \theta \cos \theta & {{\cos }^{2}}\theta \\
\end{matrix} \right]+\left[ \begin{matrix}
{{\sin }^{2}}\theta & -\sin \theta \cos \theta \\
\sin \theta \cos \theta & {{\sin }^{2}}\theta \\
\end{matrix} \right]\]
Now, applying the property of addition of two matrices which says that elements of first matrix should be added to the corresponding elements of second matrix, we get,
\[\Rightarrow \cos \theta .A+\sin \theta .B=\left[ \begin{matrix}
{{\cos }^{2}}\theta +{{\sin }^{2}}\theta & \sin \theta \cos \theta +\left( -\sin \theta \cos \theta \right) \\
-\sin \theta \cos \theta +\sin \theta \cos \theta & {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \\
\end{matrix} \right]\]
Cancelling the like terms and using the identity: - \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\], we get,
\[\Rightarrow \cos \theta .A+\sin \theta .B=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
Hence, option (b) is the correct answer.
Note: One may note that we can also solve this question by assigning some particular value to \[\theta \] like \[{{0}^{\circ }},{{90}^{\circ }}\] or \[{{45}^{\circ }}\]. We already know the values of sine and cosine functions of these angles. This process will replace trigonometric functions with their numerical values and we will be able to solve the question more easily. But remember that this process can only be applied if options are provided just like in the above question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

