
The general solution of the differential equation \[\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - y = 0\] is
A. \[y\sqrt {\tan x} = x + c\]
B.\[y\sqrt {\cot x} = \tan x + c\]
C.\[t\sqrt {\tan x} = \cot x + c\]
D.\[y\sqrt {\cot x} = x + c\]
Answer
511.5k+ views
Hint:We solve for the solution of differential equation by comparing the equation to general form of differential equation which will give us the values of \[P(x),Q(x)\] and then we find the integrating factor using the formula and multiply both sides of the equation by integrating factor and then integrate both sides.
Formula used:
a) Integrating factor is given by the formula \[I.F = {e^{\int {Pdx} }}\]
b) \[\dfrac{d}{{dx}}\cot x = - \cos e{c^2}x\]
c) Chain rule of differentiation says \[\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x)\] where \[f'(g(x))\] is differentiation of f with respect to x and \[g'(x)\] is differentiation of g with respect to x.
Complete step-by-step answer:
We are given the differential equation \[\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - y = 0\]
We shift the variable y to one side of the equation
\[ \Rightarrow \sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) = y\]
Divide both sides of the equation by \[\sin 2x\]
\[ \Rightarrow \dfrac{{\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} )}}{{\sin 2x}} = \dfrac{y}{{\sin 2x}}\]
Cancel out same terms from numerator and denominator
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \sqrt {\tan x} = \dfrac{y}{{\sin 2x}}\]
Shift the term \[\dfrac{y}{{\sin 2x}}\] to LHS of the equation and the term \[\sqrt {\tan x} \] to RHS of the equation.
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{{\sin 2x}} = \sqrt {\tan x} ………. (1) \]
This equation is of the form \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\], where \[P(x) = \dfrac{{ - 1}}{{\sin 2x}} = - \cos ec2x,Q(x) = \sqrt {\tan x} \] {Since we know \[\dfrac{1}{{\sin x}} = \cos ecx\]}
Now we find the integrating factor using the formula \[I.F = {e^{\int {Pdx} }}\]
\[
\Rightarrow I.F = {e^{\int { - \cos ec2xdx} }} \\
\Rightarrow I.F = {e^{ - \int {\cos ec2xdx} }} \\
\]
We know that \[\int {\cos ecx = \log \left| {\tan \dfrac{x}{2}} \right|} + c\]
Therefore, \[\int {\cos ec2x = \dfrac{1}{2}\log \left| {\tan \dfrac{{2x}}{2}} \right|} + c = \dfrac{1}{2}\log \left| {\tan x} \right| + c\] { integration of \[2x\] will give \[\dfrac{1}{2}\]}
Here we ignore the constant value as we are taking power of exponential. Substitute the value of integration in the power.
\[ \Rightarrow I.F = {e^{ - \dfrac{1}{2}\log (\tan x)}}\]
Now we know that \[m\log x = \log {x^m}\]
\[ \Rightarrow I.F = {e^{\log {{(\tan x)}^{ - \dfrac{1}{2}}}}}\]
Also, we know that \[{(\tan x)^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\tan x} }} = \sqrt {\cot x} \]
\[ \Rightarrow I.F = {e^{\log (\sqrt {\cot x} )}}\]
We know that log and exponential cancel each other
\[ \Rightarrow I.F = \sqrt {\cot x} \]
Now we multiply both sides of the equation (1) by \[I.F = \sqrt {\cot x} \]
\[ \Rightarrow \sqrt {\cot x} \dfrac{{dy}}{{dx}} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}} = \sqrt {\cot x} \sqrt {\tan x} …….. (2) \]
Now we can write LHS of the equation as
\[\dfrac{d}{{dx}}(y\sqrt {\cot x} )\] because when we use chain rule i.e. \[\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x)\] to find differentiation of \[(y\sqrt {\cot x} )\] we see
\[ \Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}(\sqrt {\cot x} ) + y\dfrac{d}{{dx}}(\sqrt {\cot x} )……... (3)\]
Here we have to solve for \[\dfrac{d}{{dx}}(\sqrt {\cot x} )\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{d}{{dx}}{(\cot x)^{\dfrac{1}{2}}}\]
Using the product rule of differentiation, and \[\dfrac{d}{{dx}}(\cot x) = - \cos e{c^2}x\]
\[
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{1}{2}{(\cot x)^{\dfrac{1}{2} - 1}} \times ( - \cos e{c^2}x) \\
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}{(\cot x)^{ - \dfrac{1}{2}}} \times \cos e{c^2}x \\
\]
Writing \[\cot {x^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\cot x} }}\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{1}{{\sqrt {\cot x} }}} \right\} \times \cos e{c^2}x\]
Rationalize the term inside the bracket by multiplying both numerator and denominator by \[\sqrt {\cot x} \]
\[
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{1}{{\sqrt {\cot x} }} \times \dfrac{{\sqrt {\cot x} }}{{\sqrt {\cot x} }}} \right\} \times \dfrac{1}{{{{\sin }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{{\sqrt {\cot x} }}{{{{\left( {\sqrt {\cot x} } \right)}^2}}}} \right\} \times \dfrac{1}{{{{\sin }^2}x}} \\
\]
Cancel square root by square power.
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{{\sqrt {\cot x} }}{{\cot x}}} \right\} \times \dfrac{1}{{{{\sin }^2}x}}\]
Write \[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sin x\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{{{\sin }^2}x}}\]
Cancel out same terms from numerator and denominator
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{\sin x}}\]
Write the value of \[2\sin x\cos x = \sin 2x\] in the denominator.
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{{\sqrt {\cot x} }}{{\sin 2x}}\]
Substitute the value in equation (3)
\[ \Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}\sqrt {\cot x} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}}\] … (4)
Now from equation (4) we can write equation (2) as
\[ \Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \sqrt {\cot x} \sqrt {\tan x} \]
Since, \[\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\]
\[
\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\sqrt {\tan x} \\
\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = 1 \\
\]
Shift dx to RHs of the equation
\[ \Rightarrow dy\sqrt {\cot x} = dx\]
Now we integrate both sides of the equation (here \[\sqrt {\cot x} \] is taken as constant on LHS)
\[
\Rightarrow \int {\sqrt {\cot x} dy} = \int {dx} \\
\Rightarrow y\sqrt {\cot x} = x + c \\
\]
So, the correct answer is “Option D”.
Note:Students are likely to make mistake in the part where we convert LHS as differentiation of \[(y\sqrt {\cot x} )\] because many students don’t know the differentiation of \[\cot x = - \cos e{c^2}x\], so they make it more complex. Students are advised to use differentiation and integration of common trigonometric functions directly.
Formula used:
a) Integrating factor is given by the formula \[I.F = {e^{\int {Pdx} }}\]
b) \[\dfrac{d}{{dx}}\cot x = - \cos e{c^2}x\]
c) Chain rule of differentiation says \[\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x)\] where \[f'(g(x))\] is differentiation of f with respect to x and \[g'(x)\] is differentiation of g with respect to x.
Complete step-by-step answer:
We are given the differential equation \[\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - y = 0\]
We shift the variable y to one side of the equation
\[ \Rightarrow \sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) = y\]
Divide both sides of the equation by \[\sin 2x\]
\[ \Rightarrow \dfrac{{\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} )}}{{\sin 2x}} = \dfrac{y}{{\sin 2x}}\]
Cancel out same terms from numerator and denominator
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \sqrt {\tan x} = \dfrac{y}{{\sin 2x}}\]
Shift the term \[\dfrac{y}{{\sin 2x}}\] to LHS of the equation and the term \[\sqrt {\tan x} \] to RHS of the equation.
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{{\sin 2x}} = \sqrt {\tan x} ………. (1) \]
This equation is of the form \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\], where \[P(x) = \dfrac{{ - 1}}{{\sin 2x}} = - \cos ec2x,Q(x) = \sqrt {\tan x} \] {Since we know \[\dfrac{1}{{\sin x}} = \cos ecx\]}
Now we find the integrating factor using the formula \[I.F = {e^{\int {Pdx} }}\]
\[
\Rightarrow I.F = {e^{\int { - \cos ec2xdx} }} \\
\Rightarrow I.F = {e^{ - \int {\cos ec2xdx} }} \\
\]
We know that \[\int {\cos ecx = \log \left| {\tan \dfrac{x}{2}} \right|} + c\]
Therefore, \[\int {\cos ec2x = \dfrac{1}{2}\log \left| {\tan \dfrac{{2x}}{2}} \right|} + c = \dfrac{1}{2}\log \left| {\tan x} \right| + c\] { integration of \[2x\] will give \[\dfrac{1}{2}\]}
Here we ignore the constant value as we are taking power of exponential. Substitute the value of integration in the power.
\[ \Rightarrow I.F = {e^{ - \dfrac{1}{2}\log (\tan x)}}\]
Now we know that \[m\log x = \log {x^m}\]
\[ \Rightarrow I.F = {e^{\log {{(\tan x)}^{ - \dfrac{1}{2}}}}}\]
Also, we know that \[{(\tan x)^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\tan x} }} = \sqrt {\cot x} \]
\[ \Rightarrow I.F = {e^{\log (\sqrt {\cot x} )}}\]
We know that log and exponential cancel each other
\[ \Rightarrow I.F = \sqrt {\cot x} \]
Now we multiply both sides of the equation (1) by \[I.F = \sqrt {\cot x} \]
\[ \Rightarrow \sqrt {\cot x} \dfrac{{dy}}{{dx}} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}} = \sqrt {\cot x} \sqrt {\tan x} …….. (2) \]
Now we can write LHS of the equation as
\[\dfrac{d}{{dx}}(y\sqrt {\cot x} )\] because when we use chain rule i.e. \[\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x)\] to find differentiation of \[(y\sqrt {\cot x} )\] we see
\[ \Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}(\sqrt {\cot x} ) + y\dfrac{d}{{dx}}(\sqrt {\cot x} )……... (3)\]
Here we have to solve for \[\dfrac{d}{{dx}}(\sqrt {\cot x} )\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{d}{{dx}}{(\cot x)^{\dfrac{1}{2}}}\]
Using the product rule of differentiation, and \[\dfrac{d}{{dx}}(\cot x) = - \cos e{c^2}x\]
\[
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{1}{2}{(\cot x)^{\dfrac{1}{2} - 1}} \times ( - \cos e{c^2}x) \\
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}{(\cot x)^{ - \dfrac{1}{2}}} \times \cos e{c^2}x \\
\]
Writing \[\cot {x^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\cot x} }}\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{1}{{\sqrt {\cot x} }}} \right\} \times \cos e{c^2}x\]
Rationalize the term inside the bracket by multiplying both numerator and denominator by \[\sqrt {\cot x} \]
\[
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{1}{{\sqrt {\cot x} }} \times \dfrac{{\sqrt {\cot x} }}{{\sqrt {\cot x} }}} \right\} \times \dfrac{1}{{{{\sin }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{{\sqrt {\cot x} }}{{{{\left( {\sqrt {\cot x} } \right)}^2}}}} \right\} \times \dfrac{1}{{{{\sin }^2}x}} \\
\]
Cancel square root by square power.
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{{\sqrt {\cot x} }}{{\cot x}}} \right\} \times \dfrac{1}{{{{\sin }^2}x}}\]
Write \[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sin x\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{{{\sin }^2}x}}\]
Cancel out same terms from numerator and denominator
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{\sin x}}\]
Write the value of \[2\sin x\cos x = \sin 2x\] in the denominator.
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{{\sqrt {\cot x} }}{{\sin 2x}}\]
Substitute the value in equation (3)
\[ \Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}\sqrt {\cot x} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}}\] … (4)
Now from equation (4) we can write equation (2) as
\[ \Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \sqrt {\cot x} \sqrt {\tan x} \]
Since, \[\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\]
\[
\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\sqrt {\tan x} \\
\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = 1 \\
\]
Shift dx to RHs of the equation
\[ \Rightarrow dy\sqrt {\cot x} = dx\]
Now we integrate both sides of the equation (here \[\sqrt {\cot x} \] is taken as constant on LHS)
\[
\Rightarrow \int {\sqrt {\cot x} dy} = \int {dx} \\
\Rightarrow y\sqrt {\cot x} = x + c \\
\]
So, the correct answer is “Option D”.
Note:Students are likely to make mistake in the part where we convert LHS as differentiation of \[(y\sqrt {\cot x} )\] because many students don’t know the differentiation of \[\cot x = - \cos e{c^2}x\], so they make it more complex. Students are advised to use differentiation and integration of common trigonometric functions directly.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

Azotobacter and Beijerinckia are examples of A Symbiotic class 12 biology CBSE

Forelimbs of whales bats humans and cheetah are examples class 12 biology CBSE
