
The general solution of the differential equation \[\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - y = 0\] is
A. \[y\sqrt {\tan x} = x + c\]
B.\[y\sqrt {\cot x} = \tan x + c\]
C.\[t\sqrt {\tan x} = \cot x + c\]
D.\[y\sqrt {\cot x} = x + c\]
Answer
577.5k+ views
Hint:We solve for the solution of differential equation by comparing the equation to general form of differential equation which will give us the values of \[P(x),Q(x)\] and then we find the integrating factor using the formula and multiply both sides of the equation by integrating factor and then integrate both sides.
Formula used:
a) Integrating factor is given by the formula \[I.F = {e^{\int {Pdx} }}\]
b) \[\dfrac{d}{{dx}}\cot x = - \cos e{c^2}x\]
c) Chain rule of differentiation says \[\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x)\] where \[f'(g(x))\] is differentiation of f with respect to x and \[g'(x)\] is differentiation of g with respect to x.
Complete step-by-step answer:
We are given the differential equation \[\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - y = 0\]
We shift the variable y to one side of the equation
\[ \Rightarrow \sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) = y\]
Divide both sides of the equation by \[\sin 2x\]
\[ \Rightarrow \dfrac{{\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} )}}{{\sin 2x}} = \dfrac{y}{{\sin 2x}}\]
Cancel out same terms from numerator and denominator
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \sqrt {\tan x} = \dfrac{y}{{\sin 2x}}\]
Shift the term \[\dfrac{y}{{\sin 2x}}\] to LHS of the equation and the term \[\sqrt {\tan x} \] to RHS of the equation.
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{{\sin 2x}} = \sqrt {\tan x} ………. (1) \]
This equation is of the form \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\], where \[P(x) = \dfrac{{ - 1}}{{\sin 2x}} = - \cos ec2x,Q(x) = \sqrt {\tan x} \] {Since we know \[\dfrac{1}{{\sin x}} = \cos ecx\]}
Now we find the integrating factor using the formula \[I.F = {e^{\int {Pdx} }}\]
\[
\Rightarrow I.F = {e^{\int { - \cos ec2xdx} }} \\
\Rightarrow I.F = {e^{ - \int {\cos ec2xdx} }} \\
\]
We know that \[\int {\cos ecx = \log \left| {\tan \dfrac{x}{2}} \right|} + c\]
Therefore, \[\int {\cos ec2x = \dfrac{1}{2}\log \left| {\tan \dfrac{{2x}}{2}} \right|} + c = \dfrac{1}{2}\log \left| {\tan x} \right| + c\] { integration of \[2x\] will give \[\dfrac{1}{2}\]}
Here we ignore the constant value as we are taking power of exponential. Substitute the value of integration in the power.
\[ \Rightarrow I.F = {e^{ - \dfrac{1}{2}\log (\tan x)}}\]
Now we know that \[m\log x = \log {x^m}\]
\[ \Rightarrow I.F = {e^{\log {{(\tan x)}^{ - \dfrac{1}{2}}}}}\]
Also, we know that \[{(\tan x)^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\tan x} }} = \sqrt {\cot x} \]
\[ \Rightarrow I.F = {e^{\log (\sqrt {\cot x} )}}\]
We know that log and exponential cancel each other
\[ \Rightarrow I.F = \sqrt {\cot x} \]
Now we multiply both sides of the equation (1) by \[I.F = \sqrt {\cot x} \]
\[ \Rightarrow \sqrt {\cot x} \dfrac{{dy}}{{dx}} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}} = \sqrt {\cot x} \sqrt {\tan x} …….. (2) \]
Now we can write LHS of the equation as
\[\dfrac{d}{{dx}}(y\sqrt {\cot x} )\] because when we use chain rule i.e. \[\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x)\] to find differentiation of \[(y\sqrt {\cot x} )\] we see
\[ \Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}(\sqrt {\cot x} ) + y\dfrac{d}{{dx}}(\sqrt {\cot x} )……... (3)\]
Here we have to solve for \[\dfrac{d}{{dx}}(\sqrt {\cot x} )\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{d}{{dx}}{(\cot x)^{\dfrac{1}{2}}}\]
Using the product rule of differentiation, and \[\dfrac{d}{{dx}}(\cot x) = - \cos e{c^2}x\]
\[
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{1}{2}{(\cot x)^{\dfrac{1}{2} - 1}} \times ( - \cos e{c^2}x) \\
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}{(\cot x)^{ - \dfrac{1}{2}}} \times \cos e{c^2}x \\
\]
Writing \[\cot {x^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\cot x} }}\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{1}{{\sqrt {\cot x} }}} \right\} \times \cos e{c^2}x\]
Rationalize the term inside the bracket by multiplying both numerator and denominator by \[\sqrt {\cot x} \]
\[
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{1}{{\sqrt {\cot x} }} \times \dfrac{{\sqrt {\cot x} }}{{\sqrt {\cot x} }}} \right\} \times \dfrac{1}{{{{\sin }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{{\sqrt {\cot x} }}{{{{\left( {\sqrt {\cot x} } \right)}^2}}}} \right\} \times \dfrac{1}{{{{\sin }^2}x}} \\
\]
Cancel square root by square power.
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{{\sqrt {\cot x} }}{{\cot x}}} \right\} \times \dfrac{1}{{{{\sin }^2}x}}\]
Write \[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sin x\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{{{\sin }^2}x}}\]
Cancel out same terms from numerator and denominator
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{\sin x}}\]
Write the value of \[2\sin x\cos x = \sin 2x\] in the denominator.
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{{\sqrt {\cot x} }}{{\sin 2x}}\]
Substitute the value in equation (3)
\[ \Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}\sqrt {\cot x} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}}\] … (4)
Now from equation (4) we can write equation (2) as
\[ \Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \sqrt {\cot x} \sqrt {\tan x} \]
Since, \[\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\]
\[
\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\sqrt {\tan x} \\
\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = 1 \\
\]
Shift dx to RHs of the equation
\[ \Rightarrow dy\sqrt {\cot x} = dx\]
Now we integrate both sides of the equation (here \[\sqrt {\cot x} \] is taken as constant on LHS)
\[
\Rightarrow \int {\sqrt {\cot x} dy} = \int {dx} \\
\Rightarrow y\sqrt {\cot x} = x + c \\
\]
So, the correct answer is “Option D”.
Note:Students are likely to make mistake in the part where we convert LHS as differentiation of \[(y\sqrt {\cot x} )\] because many students don’t know the differentiation of \[\cot x = - \cos e{c^2}x\], so they make it more complex. Students are advised to use differentiation and integration of common trigonometric functions directly.
Formula used:
a) Integrating factor is given by the formula \[I.F = {e^{\int {Pdx} }}\]
b) \[\dfrac{d}{{dx}}\cot x = - \cos e{c^2}x\]
c) Chain rule of differentiation says \[\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x)\] where \[f'(g(x))\] is differentiation of f with respect to x and \[g'(x)\] is differentiation of g with respect to x.
Complete step-by-step answer:
We are given the differential equation \[\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - y = 0\]
We shift the variable y to one side of the equation
\[ \Rightarrow \sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) = y\]
Divide both sides of the equation by \[\sin 2x\]
\[ \Rightarrow \dfrac{{\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} )}}{{\sin 2x}} = \dfrac{y}{{\sin 2x}}\]
Cancel out same terms from numerator and denominator
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \sqrt {\tan x} = \dfrac{y}{{\sin 2x}}\]
Shift the term \[\dfrac{y}{{\sin 2x}}\] to LHS of the equation and the term \[\sqrt {\tan x} \] to RHS of the equation.
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{{\sin 2x}} = \sqrt {\tan x} ………. (1) \]
This equation is of the form \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\], where \[P(x) = \dfrac{{ - 1}}{{\sin 2x}} = - \cos ec2x,Q(x) = \sqrt {\tan x} \] {Since we know \[\dfrac{1}{{\sin x}} = \cos ecx\]}
Now we find the integrating factor using the formula \[I.F = {e^{\int {Pdx} }}\]
\[
\Rightarrow I.F = {e^{\int { - \cos ec2xdx} }} \\
\Rightarrow I.F = {e^{ - \int {\cos ec2xdx} }} \\
\]
We know that \[\int {\cos ecx = \log \left| {\tan \dfrac{x}{2}} \right|} + c\]
Therefore, \[\int {\cos ec2x = \dfrac{1}{2}\log \left| {\tan \dfrac{{2x}}{2}} \right|} + c = \dfrac{1}{2}\log \left| {\tan x} \right| + c\] { integration of \[2x\] will give \[\dfrac{1}{2}\]}
Here we ignore the constant value as we are taking power of exponential. Substitute the value of integration in the power.
\[ \Rightarrow I.F = {e^{ - \dfrac{1}{2}\log (\tan x)}}\]
Now we know that \[m\log x = \log {x^m}\]
\[ \Rightarrow I.F = {e^{\log {{(\tan x)}^{ - \dfrac{1}{2}}}}}\]
Also, we know that \[{(\tan x)^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\tan x} }} = \sqrt {\cot x} \]
\[ \Rightarrow I.F = {e^{\log (\sqrt {\cot x} )}}\]
We know that log and exponential cancel each other
\[ \Rightarrow I.F = \sqrt {\cot x} \]
Now we multiply both sides of the equation (1) by \[I.F = \sqrt {\cot x} \]
\[ \Rightarrow \sqrt {\cot x} \dfrac{{dy}}{{dx}} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}} = \sqrt {\cot x} \sqrt {\tan x} …….. (2) \]
Now we can write LHS of the equation as
\[\dfrac{d}{{dx}}(y\sqrt {\cot x} )\] because when we use chain rule i.e. \[\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x)\] to find differentiation of \[(y\sqrt {\cot x} )\] we see
\[ \Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}(\sqrt {\cot x} ) + y\dfrac{d}{{dx}}(\sqrt {\cot x} )……... (3)\]
Here we have to solve for \[\dfrac{d}{{dx}}(\sqrt {\cot x} )\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{d}{{dx}}{(\cot x)^{\dfrac{1}{2}}}\]
Using the product rule of differentiation, and \[\dfrac{d}{{dx}}(\cot x) = - \cos e{c^2}x\]
\[
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{1}{2}{(\cot x)^{\dfrac{1}{2} - 1}} \times ( - \cos e{c^2}x) \\
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}{(\cot x)^{ - \dfrac{1}{2}}} \times \cos e{c^2}x \\
\]
Writing \[\cot {x^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\cot x} }}\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{1}{{\sqrt {\cot x} }}} \right\} \times \cos e{c^2}x\]
Rationalize the term inside the bracket by multiplying both numerator and denominator by \[\sqrt {\cot x} \]
\[
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{1}{{\sqrt {\cot x} }} \times \dfrac{{\sqrt {\cot x} }}{{\sqrt {\cot x} }}} \right\} \times \dfrac{1}{{{{\sin }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{{\sqrt {\cot x} }}{{{{\left( {\sqrt {\cot x} } \right)}^2}}}} \right\} \times \dfrac{1}{{{{\sin }^2}x}} \\
\]
Cancel square root by square power.
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\{ {\dfrac{{\sqrt {\cot x} }}{{\cot x}}} \right\} \times \dfrac{1}{{{{\sin }^2}x}}\]
Write \[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sin x\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{{{\sin }^2}x}}\]
Cancel out same terms from numerator and denominator
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{\sin x}}\]
Write the value of \[2\sin x\cos x = \sin 2x\] in the denominator.
\[ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{{\sqrt {\cot x} }}{{\sin 2x}}\]
Substitute the value in equation (3)
\[ \Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}\sqrt {\cot x} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}}\] … (4)
Now from equation (4) we can write equation (2) as
\[ \Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \sqrt {\cot x} \sqrt {\tan x} \]
Since, \[\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\]
\[
\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\sqrt {\tan x} \\
\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = 1 \\
\]
Shift dx to RHs of the equation
\[ \Rightarrow dy\sqrt {\cot x} = dx\]
Now we integrate both sides of the equation (here \[\sqrt {\cot x} \] is taken as constant on LHS)
\[
\Rightarrow \int {\sqrt {\cot x} dy} = \int {dx} \\
\Rightarrow y\sqrt {\cot x} = x + c \\
\]
So, the correct answer is “Option D”.
Note:Students are likely to make mistake in the part where we convert LHS as differentiation of \[(y\sqrt {\cot x} )\] because many students don’t know the differentiation of \[\cot x = - \cos e{c^2}x\], so they make it more complex. Students are advised to use differentiation and integration of common trigonometric functions directly.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

