
The general solution of $ \sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x $ is
A. $ n\pi + \dfrac{\pi }{8} $
B. $ \dfrac{{n\pi }}{2} + \dfrac{\pi }{8} $
C. $ {( - 1)^n}\dfrac{{n\pi }}{2} + \dfrac{\pi }{8} $
D. $ 2n\pi + {\operatorname{Cos} ^{ - 1}}\dfrac{3}{2} $
Answer
568.8k+ views
Hint: By using the formula for finding $ \operatorname{Sin} C + \operatorname{Sin} D $ and $ \operatorname{Cos} C + \operatorname{Cos} D $ we can simplify the given equation and with knowledge of the general solution of trigonometric functions like sinx, cosx, tanx we can find out the correct answer to this question.
Complete step-by-step answer:
We are given that,
$ \sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x $
We can rewrite the above equation as,
$ (\sin x + \sin 3x) - 3\sin 2x = (\cos x + \cos 3x) - 3\cos 2x $ ….(1)
Using the identities
$ \operatorname{Sin} C + \operatorname{Sin} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2} $
And
$ \operatorname{Cos} C + \operatorname{Cos} D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2} $
in equation (1), we get
$
\Rightarrow (2\sin \dfrac{{x + 3x}}{2}\cos \dfrac{{x - 3x}}{2}) - 3\sin 2x = (2\cos \dfrac{{x + 3x}}{2}\cos \dfrac{{x - 3x}}{2}) - 3\cos 2x \\
\Rightarrow 2\sin \dfrac{{4x}}{2}\cos \dfrac{{ - 2x}}{2} - 3\sin 2x = 2\cos \dfrac{{4x}}{2}\cos \dfrac{{ - 2x}}{2} - 3\cos 2x \\
2\sin 2x\cos ( - x) - 3\sin 2x = 2\cos 2x\cos ( - x) - 3\cos 2x \;
$
Now, $ \cos x $ has a positive value when x lies in the fourth quadrant and an angle of –x signifies an angle of (360-x)° i.e. the angle lies in the fourth quadrant.
$
\cos (360 - x) = \cos x \\
\Rightarrow \cos ( - x) = \cos x \;
$
Using the above results in the equation obtained,
$ 2\sin 2x\cos x - 3\sin 2x = 2\cos 2x\cos x - 3\cos 2x $
Taking $ \sin 2x $ common from the left-hand side and $ \cos 2x $ common from the right-hand side, we get
$
\sin 2x(2\cos x - 3) = \cos 2x(2\cos x - 3) \\
\dfrac{{\sin 2x}}{{\cos 2x}} = \dfrac{{2\cos x - 3}}{{2\cos x - 3}} \\
\tan 2x = 1 \;
$
Now, we know that the general solution of $ \tan x = 1 $ is $ x = n\pi + \dfrac{\pi }{4} $
$
\therefore 2x = n\pi + \dfrac{\pi }{4} \\
x = \dfrac{{n\pi }}{2} + \dfrac{\pi }{8} \;
$
Hence, option (B) is the correct answer.
So, the correct answer is “Option B”.
Additional information:
$ \sin x $ has a negative value when x lies in the fourth quadrant,
$
\sin (360 - x) = - \sin x \\
\Rightarrow \sin ( - x) = - \sin x \;
$
$ \tan x $ also has a negative value when x lies in the fourth quadrant,
$
\tan (360 - x) = - \tan x \\
\Rightarrow \tan ( - x) = - \tan x \;
$
Note:
$
\operatorname{Sin} C + \operatorname{Sin} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2} \\
\operatorname{Sin} C - \operatorname{Sin} D = 2\operatorname{Cos} \dfrac{{C + D}}{2}\operatorname{Sin} \dfrac{{C - D}}{2} \\
\operatorname{Cos} C + \operatorname{Cos} D = 2\operatorname{Cos} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2} \\
\operatorname{Cos} C - \operatorname{Cos} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Sin} \dfrac{{C - D}}{2} \\
$
Remember these formulas and don’t get confused between them.
$ \cos x $ is an even function as $ \cos ( - x) = \cos x $ ,while $ \sin x $ and $ \tan x $ are odd functions.
Complete step-by-step answer:
We are given that,
$ \sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x $
We can rewrite the above equation as,
$ (\sin x + \sin 3x) - 3\sin 2x = (\cos x + \cos 3x) - 3\cos 2x $ ….(1)
Using the identities
$ \operatorname{Sin} C + \operatorname{Sin} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2} $
And
$ \operatorname{Cos} C + \operatorname{Cos} D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2} $
in equation (1), we get
$
\Rightarrow (2\sin \dfrac{{x + 3x}}{2}\cos \dfrac{{x - 3x}}{2}) - 3\sin 2x = (2\cos \dfrac{{x + 3x}}{2}\cos \dfrac{{x - 3x}}{2}) - 3\cos 2x \\
\Rightarrow 2\sin \dfrac{{4x}}{2}\cos \dfrac{{ - 2x}}{2} - 3\sin 2x = 2\cos \dfrac{{4x}}{2}\cos \dfrac{{ - 2x}}{2} - 3\cos 2x \\
2\sin 2x\cos ( - x) - 3\sin 2x = 2\cos 2x\cos ( - x) - 3\cos 2x \;
$
Now, $ \cos x $ has a positive value when x lies in the fourth quadrant and an angle of –x signifies an angle of (360-x)° i.e. the angle lies in the fourth quadrant.
$
\cos (360 - x) = \cos x \\
\Rightarrow \cos ( - x) = \cos x \;
$
Using the above results in the equation obtained,
$ 2\sin 2x\cos x - 3\sin 2x = 2\cos 2x\cos x - 3\cos 2x $
Taking $ \sin 2x $ common from the left-hand side and $ \cos 2x $ common from the right-hand side, we get
$
\sin 2x(2\cos x - 3) = \cos 2x(2\cos x - 3) \\
\dfrac{{\sin 2x}}{{\cos 2x}} = \dfrac{{2\cos x - 3}}{{2\cos x - 3}} \\
\tan 2x = 1 \;
$
Now, we know that the general solution of $ \tan x = 1 $ is $ x = n\pi + \dfrac{\pi }{4} $
$
\therefore 2x = n\pi + \dfrac{\pi }{4} \\
x = \dfrac{{n\pi }}{2} + \dfrac{\pi }{8} \;
$
Hence, option (B) is the correct answer.
So, the correct answer is “Option B”.
Additional information:
$ \sin x $ has a negative value when x lies in the fourth quadrant,
$
\sin (360 - x) = - \sin x \\
\Rightarrow \sin ( - x) = - \sin x \;
$
$ \tan x $ also has a negative value when x lies in the fourth quadrant,
$
\tan (360 - x) = - \tan x \\
\Rightarrow \tan ( - x) = - \tan x \;
$
Note:
$
\operatorname{Sin} C + \operatorname{Sin} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2} \\
\operatorname{Sin} C - \operatorname{Sin} D = 2\operatorname{Cos} \dfrac{{C + D}}{2}\operatorname{Sin} \dfrac{{C - D}}{2} \\
\operatorname{Cos} C + \operatorname{Cos} D = 2\operatorname{Cos} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2} \\
\operatorname{Cos} C - \operatorname{Cos} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Sin} \dfrac{{C - D}}{2} \\
$
Remember these formulas and don’t get confused between them.
$ \cos x $ is an even function as $ \cos ( - x) = \cos x $ ,while $ \sin x $ and $ \tan x $ are odd functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

