
The function $f\left( x \right)={{x}^{3}}-3x$ is,
A. Increasing on $\left( -\infty ,-1 \right)\cup \left( 1,\infty \right)$ and decreasing on $\left( -1,1 \right)$.
B. Decreasing on $\left( -\infty ,-1 \right)\cup \left( 1,\infty \right)$ and increasing on $\left( -1,1 \right)$.
C. Increasing on $\left( 0,\infty \right)$ and decreasing on $\left( -\infty ,0 \right)$.
D. Decreasing on $\left( 0,\infty \right)$ and increasing on $\left( -\infty ,0 \right)$.
Answer
613.5k+ views
Hint: A function $y=f\left( x \right)$ is increasing when $\dfrac{dy}{dx}>0$ and decreasing when $\dfrac{dy}{dx}<0$. For $f\left( x \right)={{x}^{3}}-3x$, calculate $f'\left( x \right)$ and check where $f'\left( x \right)>0$ and where $f'\left( x \right)<0$. The interval where $f'\left( x \right)>0,f\left( x \right)$ will be increasing and the interval where $f'\left( x \right)<0,f\left( x \right)$ will be decreasing.
Complete step-by-step solution -
Given $f\left( x \right)={{x}^{3}}-3x$, we have to find the interval where $f\left( x \right)$ is increasing and the interval where $f\left( x \right)$ is decreasing.
We know that,
For a function $f\left( x \right)$ to be increasing in an interval, its derivative $f'\left( x \right)$ should be positive in that interval and for a function $f\left( x \right)$ to be decreasing in an interval its derivative $f'\left( x \right)$ should be negative in the interval.
Let us first find the derivative of $f\left( x \right)$,
$\begin{align}
& f\left( x \right)={{x}^{3}}-3x \\
& f'\left( x \right)=3{{x}^{2}}-3 \\
& \left[ \text{As}\ \text{we}\ \text{know}\ \text{that}\ \text{derivative}\ \text{of}\ {{x}^{n}}=n{{x}^{n-1}} \right] \\
\end{align}$
Let us find the region where $f'\left( x \right)>0$;
$\begin{align}
& f'\left( x \right)>0 \\
& \Rightarrow \left( 3{{x}^{2}}-3 \right)>0 \\
\end{align}$
Dividing both sides by ‘3’, we will get,
$\Rightarrow \left( {{x}^{2}}-1 \right)>0$
Factorising $\left( {{x}^{2}}-1 \right)=\left( x-1 \right)\left( x+1 \right)$ using $''{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)''$, we will get,
$\Rightarrow \left( x-1 \right)\left( x+1 \right)>0$
Sign diagram for this equation,
So, at $x=-1\ and\ x=1\ f'\left( x \right)=0$
And for $x\in \left( -\infty ,-1 \right)\cup \left( 1,\infty \right),f'\left( x \right)>0$
And for $x\in \left( -1,1 \right),f'\left( x \right)<0$
Thus, $f\left( x \right)$ is increasing in interval $\left( -\infty ,-1 \right)\cup \left( 1,\infty \right)$ and decreasing in the interval $\left( -1,1 \right)$.
And option (A) is the correct answer.
Note: Be careful that $x=-1\ and\ x=1\ $won’t be included in either increasing interval or decreasing interval. There will be either a local maxima or local minima at $x=1\ and\ x=-1\ \ as\ f'\left( x \right)=0$ at $x=1\ and\ x=-1\ $.
Complete step-by-step solution -
Given $f\left( x \right)={{x}^{3}}-3x$, we have to find the interval where $f\left( x \right)$ is increasing and the interval where $f\left( x \right)$ is decreasing.
We know that,
For a function $f\left( x \right)$ to be increasing in an interval, its derivative $f'\left( x \right)$ should be positive in that interval and for a function $f\left( x \right)$ to be decreasing in an interval its derivative $f'\left( x \right)$ should be negative in the interval.
Let us first find the derivative of $f\left( x \right)$,
$\begin{align}
& f\left( x \right)={{x}^{3}}-3x \\
& f'\left( x \right)=3{{x}^{2}}-3 \\
& \left[ \text{As}\ \text{we}\ \text{know}\ \text{that}\ \text{derivative}\ \text{of}\ {{x}^{n}}=n{{x}^{n-1}} \right] \\
\end{align}$
Let us find the region where $f'\left( x \right)>0$;
$\begin{align}
& f'\left( x \right)>0 \\
& \Rightarrow \left( 3{{x}^{2}}-3 \right)>0 \\
\end{align}$
Dividing both sides by ‘3’, we will get,
$\Rightarrow \left( {{x}^{2}}-1 \right)>0$
Factorising $\left( {{x}^{2}}-1 \right)=\left( x-1 \right)\left( x+1 \right)$ using $''{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)''$, we will get,
$\Rightarrow \left( x-1 \right)\left( x+1 \right)>0$
Sign diagram for this equation,
So, at $x=-1\ and\ x=1\ f'\left( x \right)=0$
And for $x\in \left( -\infty ,-1 \right)\cup \left( 1,\infty \right),f'\left( x \right)>0$
And for $x\in \left( -1,1 \right),f'\left( x \right)<0$
Thus, $f\left( x \right)$ is increasing in interval $\left( -\infty ,-1 \right)\cup \left( 1,\infty \right)$ and decreasing in the interval $\left( -1,1 \right)$.
And option (A) is the correct answer.
Note: Be careful that $x=-1\ and\ x=1\ $won’t be included in either increasing interval or decreasing interval. There will be either a local maxima or local minima at $x=1\ and\ x=-1\ \ as\ f'\left( x \right)=0$ at $x=1\ and\ x=-1\ $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

