The formula to find the slant height of the cone is
A) $l = \sqrt {{h^2} - {r^2}} $
B) $l = \sqrt {{h^2} + {r^2}} $
C) $l = \sqrt {h + {r^{}}} $
D) $l = \sqrt {{h^{}} - r} $
Answer
281.4k+ views
Hint: Before writing the formula of slant height let us see what is slant height. The slant height of an object such as cone or pyramid is the distance along the curved surface drawn from the top to a point on the circumference of the circle at the base. In other words we can say that the slant height is the shortest possible distance from the base to the apex along the surface of the solid.
Complete step by step solution:
Let us first draw the image of the cone.
Here in the above image we have AC is the slant height i.e. $l$. AB is the vertical height of the cone $(h)$ and BC is the radius i.e. $r$.
Now the formula of the slant height of the cone is $l = \sqrt {{h^2} + {r^2}} $.
Hence the correct option is (B) $l = \sqrt {{h^2} + {r^2}} $.
Note:
Now we can apply this formula whenever we have to find the slant height of the cone. Let us take an example. The height and base of a cone is $8m$ and $12m$. Calculate its slant height. Now by applying the above formula we have $h = 8$ . We should note that we have a base which is diameter , so the radius is $\dfrac{d}{2} = \dfrac{{12}}{2} = 6$. So we have $r = 6$. Now by applying the formula we have $l = \sqrt {{8^2} + {6^2}} $. On solving we have $l = \sqrt {64 + 36} = \sqrt {100} $. It gives us a slant height of $10$.
Complete step by step solution:
Let us first draw the image of the cone.

Here in the above image we have AC is the slant height i.e. $l$. AB is the vertical height of the cone $(h)$ and BC is the radius i.e. $r$.
Now the formula of the slant height of the cone is $l = \sqrt {{h^2} + {r^2}} $.
Hence the correct option is (B) $l = \sqrt {{h^2} + {r^2}} $.
Note:
Now we can apply this formula whenever we have to find the slant height of the cone. Let us take an example. The height and base of a cone is $8m$ and $12m$. Calculate its slant height. Now by applying the above formula we have $h = 8$ . We should note that we have a base which is diameter , so the radius is $\dfrac{d}{2} = \dfrac{{12}}{2} = 6$. So we have $r = 6$. Now by applying the formula we have $l = \sqrt {{8^2} + {6^2}} $. On solving we have $l = \sqrt {64 + 36} = \sqrt {100} $. It gives us a slant height of $10$.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
