
The following data shows that the age distribution of patients of malaria in a village during a particular month. Find the average age of the patients.
Age in years No of cases \[5 - 14\] \[6\] \[15 - 24\] \[11\] \[25 - 34\] \[21\] \[35 - 44\] \[23\] \[45 - 54\] \[14\] \[55 - 64\] \[5\] \[65 - 74\] \[3\]
\[({\text{A) 36}}{\text{.12}}\]
\[(B{\text{) 36}}{\text{.13}}\]
\[(C{\text{) 13}}{\text{.36}}\]
\[({\text{D) 23}}{\text{.36}}\]
| Age in years | No of cases |
| \[5 - 14\] | \[6\] |
| \[15 - 24\] | \[11\] |
| \[25 - 34\] | \[21\] |
| \[35 - 44\] | \[23\] |
| \[45 - 54\] | \[14\] |
| \[55 - 64\] | \[5\] |
| \[65 - 74\] | \[3\] |
Answer
558k+ views
Hint: First, we have to find the class mark (mid-value of the intervals).
Multiply it with the f, frequencies to get \[\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}\] and using mean formula we will be able to find the answer.
Formula used: \[{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}\]
To find mean,
\[\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}\]
Complete step-by-step solution:
This is a grouped data where class intervals are given. So, we need to find class marks.
Class mark is nothing but mid value of intervals (class mark is taken as \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\])
Here the formula for \[{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}\]
Then we get, \[\dfrac{{{\text{5}}\left( {{\text{lower limit}}} \right){\text{ + 14(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ = \dfrac{{19}}{2}\]
Let us divide,
\[ \Rightarrow 9.5\]
\[\dfrac{{15\left( {{\text{lower limit}}} \right){\text{ + 24(upper limit}})}}{2}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{39}}{2}\]
Let us divide,
\[ \Rightarrow 19.5\]
\[\dfrac{{{\text{25}}\left( {{\text{lower limit}}} \right){\text{ + 34(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{59}}{2}\]
Let us divide,
\[ \Rightarrow 29.5\]
\[\dfrac{{35\left( {{\text{lower limit}}} \right){\text{ + 44(upper limit}})}}{2}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{79}}{2}\]
Let us divide,
\[ \Rightarrow 39.5\]
\[\dfrac{{{\text{45}}\left( {{\text{lower limit}}} \right){\text{ + 54(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{99}}{2}\]
Let us divide,
\[ \Rightarrow 49.5\]
\[\dfrac{{{\text{55}}\left( {{\text{lower limit}}} \right){\text{ + 64(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{119}}{2}\]
Let us divide,
\[ \Rightarrow 59.5\]
\[\dfrac{{{\text{65}}\left( {{\text{lower limit}}} \right){\text{ + 74(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{139}}{2}\]
Let us divide,
\[ \Rightarrow 69.5\]
Now, we have to find \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] by multiplying \[{\text{(}}{{\text{f}}_{\text{i}}})\]and \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\] to compute mean.
i.e., $6 \times 9.5 = 57$, like this we get \[214.5,619.5,908.5,693,297.5\] and \[208.5\]
Add all the \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] and \[{\text{(}}{{\text{f}}_{\text{i}}})\] to get \[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}}\] and \[{\sum {\text{f}} _{\text{i}}}\].
So here we have,
\[{\sum {\text{f}} _{\text{i}}}\] = 83
\[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}}\] = 2998.5
To find mean, the formula is \[\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}\]
Substituting the formula, we get
\[\overline {\text{x}} = \dfrac{{2998.5}}{{83}}\]
\[ = 36.126\]
\[ = 36.13\]
Therefore the correct answer is option \[({\text{B) }}36.13\]
Note: In this Alternative method:
We can avoid the tedious calculations of computing mean ${\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}$ by using step-deviation method. In this method, we take an assumed mean which is in the middle or just close to it in the data.
${\text{A = Assumed mean}}$
${\text{C = Class length}}$ i.e., in the given class interval, there are \[10\] variables in between.
Formula used:
\[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\]
\[\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}\] So here,
\[{\text{A = 39}}{\text{.5}}\]
${\text{C = 10}}$
\[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\]
Add all the $({{\text{d}}_{\text{i}}}{{\text{f}}_{\text{i}}}{\text{)}}$ and \[{\text{(}}{{\text{f}}_{\text{i}}})\] to get \[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}}\] and \[{\sum {\text{f}} _{\text{i}}}\].
\[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} = - 28\]
\[{\sum {\text{f}} _{\text{i}}} = {\text{ 83}}\]
Now,
\[\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}\]
Applying the formula,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {\dfrac{{( - 28)}}{{83}}{\text{ }} \times {\text{ 10}}} \right]\]
On dividing the bracket term and we get,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {{\text{ - 0}}{\text{.337 }} \times {\text{ 10}}} \right]\]
On multiply the terms and we get,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ { - 3.37} \right]\]
Let us subtracting the terms and we get,
\[\overline {\text{x}} {\text{ = 36}}{\text{.13}}\]
We got the answer.
Multiply it with the f, frequencies to get \[\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}\] and using mean formula we will be able to find the answer.
Formula used: \[{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}\]
To find mean,
\[\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}\]
Complete step-by-step solution:
This is a grouped data where class intervals are given. So, we need to find class marks.
Class mark is nothing but mid value of intervals (class mark is taken as \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\])
Here the formula for \[{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}\]
Then we get, \[\dfrac{{{\text{5}}\left( {{\text{lower limit}}} \right){\text{ + 14(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ = \dfrac{{19}}{2}\]
Let us divide,
\[ \Rightarrow 9.5\]
\[\dfrac{{15\left( {{\text{lower limit}}} \right){\text{ + 24(upper limit}})}}{2}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{39}}{2}\]
Let us divide,
\[ \Rightarrow 19.5\]
\[\dfrac{{{\text{25}}\left( {{\text{lower limit}}} \right){\text{ + 34(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{59}}{2}\]
Let us divide,
\[ \Rightarrow 29.5\]
\[\dfrac{{35\left( {{\text{lower limit}}} \right){\text{ + 44(upper limit}})}}{2}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{79}}{2}\]
Let us divide,
\[ \Rightarrow 39.5\]
\[\dfrac{{{\text{45}}\left( {{\text{lower limit}}} \right){\text{ + 54(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{99}}{2}\]
Let us divide,
\[ \Rightarrow 49.5\]
\[\dfrac{{{\text{55}}\left( {{\text{lower limit}}} \right){\text{ + 64(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{119}}{2}\]
Let us divide,
\[ \Rightarrow 59.5\]
\[\dfrac{{{\text{65}}\left( {{\text{lower limit}}} \right){\text{ + 74(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{139}}{2}\]
Let us divide,
\[ \Rightarrow 69.5\]
Now, we have to find \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] by multiplying \[{\text{(}}{{\text{f}}_{\text{i}}})\]and \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\] to compute mean.
i.e., $6 \times 9.5 = 57$, like this we get \[214.5,619.5,908.5,693,297.5\] and \[208.5\]
| Age (in years) | No of cases \[{\text{(}}{{\text{f}}_{\text{i}}}{\text{)}}\] | Class mark \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\] | \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] |
| \[5 - 14\] | \[6\] | \[9.5\] | \[57\] |
| \[15 - 24\] | \[11\] | \[19.5\] | \[214.5\] |
| \[25 - 34\] | \[21\] | \[29.5\] | \[619.5\] |
| \[35 - 44\] | \[23\] | \[39.5\] | \[908.5\] |
| \[45 - 54\] | \[14\] | \[49.5\] | \[693\] |
| \[55 - 64\] | \[5\] | \[59.5\] | \[297.5\] |
| \[65 - 74\] | \[3\] | \[69.5\] | \[208.5\] |
| \[{\sum {\text{f}} _{\text{i}}} = \]\[83\] | \[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}} = 2998.5\] |
Add all the \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] and \[{\text{(}}{{\text{f}}_{\text{i}}})\] to get \[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}}\] and \[{\sum {\text{f}} _{\text{i}}}\].
So here we have,
\[{\sum {\text{f}} _{\text{i}}}\] = 83
\[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}}\] = 2998.5
To find mean, the formula is \[\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}\]
Substituting the formula, we get
\[\overline {\text{x}} = \dfrac{{2998.5}}{{83}}\]
\[ = 36.126\]
\[ = 36.13\]
Therefore the correct answer is option \[({\text{B) }}36.13\]
Note: In this Alternative method:
We can avoid the tedious calculations of computing mean ${\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}$ by using step-deviation method. In this method, we take an assumed mean which is in the middle or just close to it in the data.
${\text{A = Assumed mean}}$
${\text{C = Class length}}$ i.e., in the given class interval, there are \[10\] variables in between.
Formula used:
\[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\]
\[\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}\] So here,
\[{\text{A = 39}}{\text{.5}}\]
${\text{C = 10}}$
\[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\]
| Age (in years) | No of cases \[{\text{(}}{{\text{f}}_{\text{i}}}{\text{)}}\] | Class mark \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\] | \[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\] | $({{\text{d}}_{\text{i}}}{{\text{f}}_{\text{i}}}{\text{)}}$ |
| \[5 - 14\] | \[6\] | \[9.5\] | \[\dfrac{{{\text{9}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 30}}{{10}} = - 3\] | $ - 3 \times 6 = - 18$ |
| \[15 - 24\] | \[11\] | \[19.5\] | \[\dfrac{{{\text{19}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 20}}{{10}} = - 2\] | $ - 2 \times 11 = - 22$ |
| \[25 - 34\] | \[21\] | \[29.5\] | \[\dfrac{{{\text{29}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 10}}{{10}} = - 1\] | $ - 1 \times 21 = - 21$ |
| \[35 - 44\] | \[23\] | \[39.5\] | \[\dfrac{{{\text{39}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{0}{{10}} = 0\] | $0 \times 23 = 0$ |
| \[45 - 54\] | \[14\] | \[49.5\] | \[\dfrac{{{\text{49}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{10}}{{10}} = 1\] | $1 \times 14 = 14$ |
| \[55 - 64\] | \[5\] | \[59.5\] | \[\dfrac{{{\text{59}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{20}}{{10}} = 2\] | $2 \times 5 = 10$ |
| \[65 - 74\] | \[3\] | \[69.5\] | \[\dfrac{{{\text{69}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{30}}{{10}} = 3\] | $3 \times 3 = 9$ |
| \[{\sum {\text{f}} _{\text{i}}} = {\text{ 83}}\] | \[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} = - 28\] |
Add all the $({{\text{d}}_{\text{i}}}{{\text{f}}_{\text{i}}}{\text{)}}$ and \[{\text{(}}{{\text{f}}_{\text{i}}})\] to get \[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}}\] and \[{\sum {\text{f}} _{\text{i}}}\].
\[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} = - 28\]
\[{\sum {\text{f}} _{\text{i}}} = {\text{ 83}}\]
Now,
\[\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}\]
Applying the formula,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {\dfrac{{( - 28)}}{{83}}{\text{ }} \times {\text{ 10}}} \right]\]
On dividing the bracket term and we get,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {{\text{ - 0}}{\text{.337 }} \times {\text{ 10}}} \right]\]
On multiply the terms and we get,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ { - 3.37} \right]\]
Let us subtracting the terms and we get,
\[\overline {\text{x}} {\text{ = 36}}{\text{.13}}\]
We got the answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

