
The following data shows that the age distribution of patients of malaria in a village during a particular month. Find the average age of the patients.
Age in years No of cases \[5 - 14\] \[6\] \[15 - 24\] \[11\] \[25 - 34\] \[21\] \[35 - 44\] \[23\] \[45 - 54\] \[14\] \[55 - 64\] \[5\] \[65 - 74\] \[3\]
\[({\text{A) 36}}{\text{.12}}\]
\[(B{\text{) 36}}{\text{.13}}\]
\[(C{\text{) 13}}{\text{.36}}\]
\[({\text{D) 23}}{\text{.36}}\]
Age in years | No of cases |
\[5 - 14\] | \[6\] |
\[15 - 24\] | \[11\] |
\[25 - 34\] | \[21\] |
\[35 - 44\] | \[23\] |
\[45 - 54\] | \[14\] |
\[55 - 64\] | \[5\] |
\[65 - 74\] | \[3\] |
Answer
484.8k+ views
Hint: First, we have to find the class mark (mid-value of the intervals).
Multiply it with the f, frequencies to get \[\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}\] and using mean formula we will be able to find the answer.
Formula used: \[{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}\]
To find mean,
\[\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}\]
Complete step-by-step solution:
This is a grouped data where class intervals are given. So, we need to find class marks.
Class mark is nothing but mid value of intervals (class mark is taken as \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\])
Here the formula for \[{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}\]
Then we get, \[\dfrac{{{\text{5}}\left( {{\text{lower limit}}} \right){\text{ + 14(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ = \dfrac{{19}}{2}\]
Let us divide,
\[ \Rightarrow 9.5\]
\[\dfrac{{15\left( {{\text{lower limit}}} \right){\text{ + 24(upper limit}})}}{2}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{39}}{2}\]
Let us divide,
\[ \Rightarrow 19.5\]
\[\dfrac{{{\text{25}}\left( {{\text{lower limit}}} \right){\text{ + 34(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{59}}{2}\]
Let us divide,
\[ \Rightarrow 29.5\]
\[\dfrac{{35\left( {{\text{lower limit}}} \right){\text{ + 44(upper limit}})}}{2}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{79}}{2}\]
Let us divide,
\[ \Rightarrow 39.5\]
\[\dfrac{{{\text{45}}\left( {{\text{lower limit}}} \right){\text{ + 54(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{99}}{2}\]
Let us divide,
\[ \Rightarrow 49.5\]
\[\dfrac{{{\text{55}}\left( {{\text{lower limit}}} \right){\text{ + 64(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{119}}{2}\]
Let us divide,
\[ \Rightarrow 59.5\]
\[\dfrac{{{\text{65}}\left( {{\text{lower limit}}} \right){\text{ + 74(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{139}}{2}\]
Let us divide,
\[ \Rightarrow 69.5\]
Now, we have to find \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] by multiplying \[{\text{(}}{{\text{f}}_{\text{i}}})\]and \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\] to compute mean.
i.e., $6 \times 9.5 = 57$, like this we get \[214.5,619.5,908.5,693,297.5\] and \[208.5\]
Add all the \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] and \[{\text{(}}{{\text{f}}_{\text{i}}})\] to get \[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}}\] and \[{\sum {\text{f}} _{\text{i}}}\].
So here we have,
\[{\sum {\text{f}} _{\text{i}}}\] = 83
\[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}}\] = 2998.5
To find mean, the formula is \[\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}\]
Substituting the formula, we get
\[\overline {\text{x}} = \dfrac{{2998.5}}{{83}}\]
\[ = 36.126\]
\[ = 36.13\]
Therefore the correct answer is option \[({\text{B) }}36.13\]
Note: In this Alternative method:
We can avoid the tedious calculations of computing mean ${\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}$ by using step-deviation method. In this method, we take an assumed mean which is in the middle or just close to it in the data.
${\text{A = Assumed mean}}$
${\text{C = Class length}}$ i.e., in the given class interval, there are \[10\] variables in between.
Formula used:
\[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\]
\[\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}\] So here,
\[{\text{A = 39}}{\text{.5}}\]
${\text{C = 10}}$
\[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\]
Add all the $({{\text{d}}_{\text{i}}}{{\text{f}}_{\text{i}}}{\text{)}}$ and \[{\text{(}}{{\text{f}}_{\text{i}}})\] to get \[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}}\] and \[{\sum {\text{f}} _{\text{i}}}\].
\[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} = - 28\]
\[{\sum {\text{f}} _{\text{i}}} = {\text{ 83}}\]
Now,
\[\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}\]
Applying the formula,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {\dfrac{{( - 28)}}{{83}}{\text{ }} \times {\text{ 10}}} \right]\]
On dividing the bracket term and we get,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {{\text{ - 0}}{\text{.337 }} \times {\text{ 10}}} \right]\]
On multiply the terms and we get,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ { - 3.37} \right]\]
Let us subtracting the terms and we get,
\[\overline {\text{x}} {\text{ = 36}}{\text{.13}}\]
We got the answer.
Multiply it with the f, frequencies to get \[\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}\] and using mean formula we will be able to find the answer.
Formula used: \[{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}\]
To find mean,
\[\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}\]
Complete step-by-step solution:
This is a grouped data where class intervals are given. So, we need to find class marks.
Class mark is nothing but mid value of intervals (class mark is taken as \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\])
Here the formula for \[{\text{Mid value = }}\dfrac{{{\text{lower limit + upper limit}}}}{2}\]
Then we get, \[\dfrac{{{\text{5}}\left( {{\text{lower limit}}} \right){\text{ + 14(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ = \dfrac{{19}}{2}\]
Let us divide,
\[ \Rightarrow 9.5\]
\[\dfrac{{15\left( {{\text{lower limit}}} \right){\text{ + 24(upper limit}})}}{2}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{39}}{2}\]
Let us divide,
\[ \Rightarrow 19.5\]
\[\dfrac{{{\text{25}}\left( {{\text{lower limit}}} \right){\text{ + 34(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{59}}{2}\]
Let us divide,
\[ \Rightarrow 29.5\]
\[\dfrac{{35\left( {{\text{lower limit}}} \right){\text{ + 44(upper limit}})}}{2}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{79}}{2}\]
Let us divide,
\[ \Rightarrow 39.5\]
\[\dfrac{{{\text{45}}\left( {{\text{lower limit}}} \right){\text{ + 54(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{99}}{2}\]
Let us divide,
\[ \Rightarrow 49.5\]
\[\dfrac{{{\text{55}}\left( {{\text{lower limit}}} \right){\text{ + 64(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{119}}{2}\]
Let us divide,
\[ \Rightarrow 59.5\]
\[\dfrac{{{\text{65}}\left( {{\text{lower limit}}} \right){\text{ + 74(upper limit)}}}}{{\text{2}}}\]
On adding the numerator terms and we get,
\[ \Rightarrow \dfrac{{139}}{2}\]
Let us divide,
\[ \Rightarrow 69.5\]
Now, we have to find \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] by multiplying \[{\text{(}}{{\text{f}}_{\text{i}}})\]and \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\] to compute mean.
i.e., $6 \times 9.5 = 57$, like this we get \[214.5,619.5,908.5,693,297.5\] and \[208.5\]
Age (in years) | No of cases \[{\text{(}}{{\text{f}}_{\text{i}}}{\text{)}}\] | Class mark \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\] | \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] |
\[5 - 14\] | \[6\] | \[9.5\] | \[57\] |
\[15 - 24\] | \[11\] | \[19.5\] | \[214.5\] |
\[25 - 34\] | \[21\] | \[29.5\] | \[619.5\] |
\[35 - 44\] | \[23\] | \[39.5\] | \[908.5\] |
\[45 - 54\] | \[14\] | \[49.5\] | \[693\] |
\[55 - 64\] | \[5\] | \[59.5\] | \[297.5\] |
\[65 - 74\] | \[3\] | \[69.5\] | \[208.5\] |
\[{\sum {\text{f}} _{\text{i}}} = \]\[83\] | \[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}} = 2998.5\] |
Add all the \[{{\text{f}}_{\text{i}}}{{\text{x}}_{\text{i}}}\] and \[{\text{(}}{{\text{f}}_{\text{i}}})\] to get \[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}}\] and \[{\sum {\text{f}} _{\text{i}}}\].
So here we have,
\[{\sum {\text{f}} _{\text{i}}}\] = 83
\[{\sum {\text{f}} _{\text{i}}}{{\text{x}}_{\text{i}}}\] = 2998.5
To find mean, the formula is \[\overline {\text{x}} {\text{ = }}\dfrac{{\sum {{{\text{x}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}\]
Substituting the formula, we get
\[\overline {\text{x}} = \dfrac{{2998.5}}{{83}}\]
\[ = 36.126\]
\[ = 36.13\]
Therefore the correct answer is option \[({\text{B) }}36.13\]
Note: In this Alternative method:
We can avoid the tedious calculations of computing mean ${\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}$ by using step-deviation method. In this method, we take an assumed mean which is in the middle or just close to it in the data.
${\text{A = Assumed mean}}$
${\text{C = Class length}}$ i.e., in the given class interval, there are \[10\] variables in between.
Formula used:
\[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\]
\[\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}\] So here,
\[{\text{A = 39}}{\text{.5}}\]
${\text{C = 10}}$
\[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\]
Age (in years) | No of cases \[{\text{(}}{{\text{f}}_{\text{i}}}{\text{)}}\] | Class mark \[{\text{(}}{{\text{x}}_{\text{i}}}{\text{)}}\] | \[{{\text{d}}_{\text{i}}}{\text{ = }}\dfrac{{{{\text{x}}_{\text{i}}}{\text{ - A}}}}{{\text{c}}}\] | $({{\text{d}}_{\text{i}}}{{\text{f}}_{\text{i}}}{\text{)}}$ |
\[5 - 14\] | \[6\] | \[9.5\] | \[\dfrac{{{\text{9}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 30}}{{10}} = - 3\] | $ - 3 \times 6 = - 18$ |
\[15 - 24\] | \[11\] | \[19.5\] | \[\dfrac{{{\text{19}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 20}}{{10}} = - 2\] | $ - 2 \times 11 = - 22$ |
\[25 - 34\] | \[21\] | \[29.5\] | \[\dfrac{{{\text{29}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{ - 10}}{{10}} = - 1\] | $ - 1 \times 21 = - 21$ |
\[35 - 44\] | \[23\] | \[39.5\] | \[\dfrac{{{\text{39}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{0}{{10}} = 0\] | $0 \times 23 = 0$ |
\[45 - 54\] | \[14\] | \[49.5\] | \[\dfrac{{{\text{49}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{10}}{{10}} = 1\] | $1 \times 14 = 14$ |
\[55 - 64\] | \[5\] | \[59.5\] | \[\dfrac{{{\text{59}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{20}}{{10}} = 2\] | $2 \times 5 = 10$ |
\[65 - 74\] | \[3\] | \[69.5\] | \[\dfrac{{{\text{69}}{\text{.5 - 39}}{\text{.5}}}}{{10}} = \dfrac{{30}}{{10}} = 3\] | $3 \times 3 = 9$ |
\[{\sum {\text{f}} _{\text{i}}} = {\text{ 83}}\] | \[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} = - 28\] |
Add all the $({{\text{d}}_{\text{i}}}{{\text{f}}_{\text{i}}}{\text{)}}$ and \[{\text{(}}{{\text{f}}_{\text{i}}})\] to get \[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}}\] and \[{\sum {\text{f}} _{\text{i}}}\].
\[{\sum {\text{d}} _{\text{i}}}{{\text{f}}_{\text{i}}} = - 28\]
\[{\sum {\text{f}} _{\text{i}}} = {\text{ 83}}\]
Now,
\[\overline {\text{x}} {\text{ = A + }}\dfrac{{\sum {{{\text{d}}_{\text{i}}}} {{\text{f}}_{\text{i}}}}}{{{{\sum {\text{f}} }_{\text{i}}}}}{\text{ }} \times {\text{ C}}\]
Applying the formula,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {\dfrac{{( - 28)}}{{83}}{\text{ }} \times {\text{ 10}}} \right]\]
On dividing the bracket term and we get,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ {{\text{ - 0}}{\text{.337 }} \times {\text{ 10}}} \right]\]
On multiply the terms and we get,
\[\overline {\text{x}} {\text{ = 39}}{\text{.5 + }}\left[ { - 3.37} \right]\]
Let us subtracting the terms and we get,
\[\overline {\text{x}} {\text{ = 36}}{\text{.13}}\]
We got the answer.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
