
The $f\left( x \right) = \dfrac{1}{2}\sin x\tan x - \log \left( {\sec x} \right)$ is increasing in:
1) $\left( { - \dfrac{\pi }{2},0} \right)$
2) $\left( {\pi ,\dfrac{{3\pi }}{2}} \right)$
3) $\left( {0,\dfrac{\pi }{2}} \right)$
4) $\left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right)$
Answer
584.1k+ views
Hint: We will take the differentiation of the given function using the product rule, $\dfrac{{du\left( x \right)v\left( x \right)}}{{dx}} = u'\left( x \right)v\left( x \right) + u\left( x \right)v'\left( x \right)$ and chain rule, ${\left( {u\left( {v\left( x \right)} \right)} \right)^\prime } = u'\left( {v\left( x \right)} \right)v'\left( x \right)$. Then, simplify the expression and determine the interval where $f'\left( x \right) > 0$.
Complete step-by-step answer:
We have to find the interval where the function $f\left( x \right) = \dfrac{1}{2}\sin x\tan x - \log \left( {\sec x} \right)$ is increasing.
We will differentiate the function with respect to $x$
We will use product rules to differentiate the first term. Product rule states that $\dfrac{{du\left( x \right)v\left( x \right)}}{{dx}} = u'\left( x \right)v\left( x \right) + u\left( x \right)v'\left( x \right)$
And we will use chain rule to differentiate the second term.
Chain rule states that ${\left( {u\left( {v\left( x \right)} \right)} \right)^\prime } = u'\left( {v\left( x \right)} \right)v'\left( x \right)$
\[f'\left( x \right) = \dfrac{1}{2}\left( {\dfrac{{d\left( {\sin x} \right)}}{{dx}}\tan x + \dfrac{{d\left( {\tan x} \right)}}{{dx}}\sin x} \right) - \dfrac{{d\left( {\log \left( {\sec x} \right)} \right)}}{{dx}}\dfrac{d}{{dx}}\left( {\sec x} \right)\]
Now, we know that \[\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\], \[\dfrac{{d\left( {\tan x} \right)}}{{dx}} = {\sec ^2}x\], \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\], and \[\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}\]
On substituting the values in the expression, we will get,
$
f'\left( x \right) = \dfrac{1}{2}\left( {\cos x\tan x + {{\sec }^2}x\sin x} \right) - \dfrac{1}{{\sec x}}\tan x\sec x \\
\Rightarrow f'\left( x \right) = \dfrac{1}{2}\left( {\cos x\tan x + {{\sec }^2}x\sin x} \right) - \tan x \\
$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\sec \theta = \dfrac{1}{{\cos \theta }}$
Then,
$
f'\left( x \right) = \dfrac{1}{2}\left( {\dfrac{{\cos x\sin x}}{{\cos x}} + \dfrac{{\tan x\cos x}}{{{{\cos }^2}x}}} \right) - \tan x \\
\Rightarrow f'\left( x \right) = \dfrac{1}{2}\left( {\sin x + \dfrac{{\tan x}}{{\cos x}}} \right) - \tan x \\
\Rightarrow f'\left( x \right) = \dfrac{{\sin x}}{2} + \dfrac{{\tan x\sec x}}{2} - \tan x \\
\Rightarrow f'\left( x \right) = \dfrac{{\sin x}}{2} + \dfrac{{\tan x}}{2}\left( {\sec x - 1} \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{2}\left( {\sin x + \tan x\left( {\sec x - 1} \right)} \right) \\
$
For the function to be increasing $f'\left( x \right) > 0$
\[\dfrac{1}{2}\left( {\sin x + \tan x\left( {\sec x - 1} \right)} \right) > 0\]
\[\sin x - \tan x\left( {\sec x - 1} \right) > 0\]
\[ \Rightarrow \sin x > \tan x\left( {\sec x - 1} \right)\]
This function is increasing only when $\left( {0,\dfrac{\pi }{2}} \right)$
Hence, option 3 is correct.
Note: The points at which the differentiation of the function is greater than 0, then it is an increasing function and if the differentiation of the function is less than 0, then the function is a decreasing function.
Complete step-by-step answer:
We have to find the interval where the function $f\left( x \right) = \dfrac{1}{2}\sin x\tan x - \log \left( {\sec x} \right)$ is increasing.
We will differentiate the function with respect to $x$
We will use product rules to differentiate the first term. Product rule states that $\dfrac{{du\left( x \right)v\left( x \right)}}{{dx}} = u'\left( x \right)v\left( x \right) + u\left( x \right)v'\left( x \right)$
And we will use chain rule to differentiate the second term.
Chain rule states that ${\left( {u\left( {v\left( x \right)} \right)} \right)^\prime } = u'\left( {v\left( x \right)} \right)v'\left( x \right)$
\[f'\left( x \right) = \dfrac{1}{2}\left( {\dfrac{{d\left( {\sin x} \right)}}{{dx}}\tan x + \dfrac{{d\left( {\tan x} \right)}}{{dx}}\sin x} \right) - \dfrac{{d\left( {\log \left( {\sec x} \right)} \right)}}{{dx}}\dfrac{d}{{dx}}\left( {\sec x} \right)\]
Now, we know that \[\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x\], \[\dfrac{{d\left( {\tan x} \right)}}{{dx}} = {\sec ^2}x\], \[\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\], and \[\dfrac{{d\left( {\log x} \right)}}{{dx}} = \dfrac{1}{x}\]
On substituting the values in the expression, we will get,
$
f'\left( x \right) = \dfrac{1}{2}\left( {\cos x\tan x + {{\sec }^2}x\sin x} \right) - \dfrac{1}{{\sec x}}\tan x\sec x \\
\Rightarrow f'\left( x \right) = \dfrac{1}{2}\left( {\cos x\tan x + {{\sec }^2}x\sin x} \right) - \tan x \\
$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\sec \theta = \dfrac{1}{{\cos \theta }}$
Then,
$
f'\left( x \right) = \dfrac{1}{2}\left( {\dfrac{{\cos x\sin x}}{{\cos x}} + \dfrac{{\tan x\cos x}}{{{{\cos }^2}x}}} \right) - \tan x \\
\Rightarrow f'\left( x \right) = \dfrac{1}{2}\left( {\sin x + \dfrac{{\tan x}}{{\cos x}}} \right) - \tan x \\
\Rightarrow f'\left( x \right) = \dfrac{{\sin x}}{2} + \dfrac{{\tan x\sec x}}{2} - \tan x \\
\Rightarrow f'\left( x \right) = \dfrac{{\sin x}}{2} + \dfrac{{\tan x}}{2}\left( {\sec x - 1} \right) \\
\Rightarrow f'\left( x \right) = \dfrac{1}{2}\left( {\sin x + \tan x\left( {\sec x - 1} \right)} \right) \\
$
For the function to be increasing $f'\left( x \right) > 0$
\[\dfrac{1}{2}\left( {\sin x + \tan x\left( {\sec x - 1} \right)} \right) > 0\]
\[\sin x - \tan x\left( {\sec x - 1} \right) > 0\]
\[ \Rightarrow \sin x > \tan x\left( {\sec x - 1} \right)\]
This function is increasing only when $\left( {0,\dfrac{\pi }{2}} \right)$
Hence, option 3 is correct.
Note: The points at which the differentiation of the function is greater than 0, then it is an increasing function and if the differentiation of the function is less than 0, then the function is a decreasing function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

