
The factor tree for 60 is given. Write the missing numbers.
Answer
569.7k+ views
Hint: We try to process the factor tree and form the multiplication rule for the factors. From the one given factor we find the other one using division. The process continues for two more times. At the last process we break 10 into multiplication of two terms. Finally we form the factor free again to complete it.
Complete step by step answer:
The given image defines the factor tree. The primary term being 60. In every branching the main term x has been divided into two factors a and b in the multiplication form.
So, $x=a\times b$. This process continues for 3 times.
The starting value for x is 60. The one part of the breaking is 30. We need to find the other part. Let that be b. we consider 30 as a.
So, $60=30\times b$. This gives $b=\dfrac{60}{30}=2$. We got the first unknown as 2.
In the second breaking 30 has been broken into two parts, one being 10.
So, $x=30,a=10$. We get $30=10\times b$. This gives $b=\dfrac{30}{10}=3$. We got the second unknown as 3.
At the last breaking 10 has been broken in two parts out of which no term is given. So, we break the term 10 in factors. $10=1\times 10=2\times 5$.
So, we have two possible choices. We got the last two unknowns as $\left( 1,10 \right)$ or $\left( 2,5 \right)$. But if we take the first choice then the tree structure gets stuck. The primary value of 10 never changes. So, we take second choice of $\left( 2,5 \right)$.
Now we create the diagram.
Note: We need to remember that when we are following the factor rule then there will always be a chance of breaking the primary part as the multiplication of that term itself and 1. The process gets stuck in recurring form in that process. We can’t allow that in a tree form.
Complete step by step answer:
The given image defines the factor tree. The primary term being 60. In every branching the main term x has been divided into two factors a and b in the multiplication form.
So, $x=a\times b$. This process continues for 3 times.
The starting value for x is 60. The one part of the breaking is 30. We need to find the other part. Let that be b. we consider 30 as a.
So, $60=30\times b$. This gives $b=\dfrac{60}{30}=2$. We got the first unknown as 2.
In the second breaking 30 has been broken into two parts, one being 10.
So, $x=30,a=10$. We get $30=10\times b$. This gives $b=\dfrac{30}{10}=3$. We got the second unknown as 3.
At the last breaking 10 has been broken in two parts out of which no term is given. So, we break the term 10 in factors. $10=1\times 10=2\times 5$.
So, we have two possible choices. We got the last two unknowns as $\left( 1,10 \right)$ or $\left( 2,5 \right)$. But if we take the first choice then the tree structure gets stuck. The primary value of 10 never changes. So, we take second choice of $\left( 2,5 \right)$.
Now we create the diagram.
Note: We need to remember that when we are following the factor rule then there will always be a chance of breaking the primary part as the multiplication of that term itself and 1. The process gets stuck in recurring form in that process. We can’t allow that in a tree form.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


