
The extremely high melting point of diamond (carbon) may be explained by the:
A. Network covalent bonds
B. Ionic bonds
C. Hydrogen bonds
D. Van der Waals forces
E. None of the above
Answer
587.4k+ views
Hint: Try to recall that diamond is a crystalline allotropic form of carbon and is the purest form of carbon. Also, in diamond each carbon is tetrahedrally linked to four neighbouring carbon atoms. Now, by using this you can easily answer the given question.
Complete step by step solution:
-It is known to you that carbon exists in two or more forms which have different physical properties but identical chemical properties and diamond is the purest form of carbon.
-It occurs in nature and can also be prepared artificially but because of high cost and poor quality, diamonds are seldom made artificially.
-Also, diamond has the highest thermal conductivity of any known substance although it is a bad conductor of electricity.
-In diamond, carbon atoms are sp3-hybridized. Each carbon atom is tetrahedrally linked to four neighbouring carbon atoms through four strong sigma covalent bonds. This network extends in three dimensions and is very rigid.
-Diamond exists as a three-dimensional network solid, so it is the hardest substance with high density and melting point.
Therefore, from above we can easily conclude that option A is the correct option to the given question.
Note:
- It should be remembered to you that diamond is a bad conductor of electricity because all the electrons are firmly held in C-C covalent bonds, so there are no free electrons in a diamond crystal.
- Also, you should remember that because of its hardness, diamond is used for cutting glasses.
Complete step by step solution:
-It is known to you that carbon exists in two or more forms which have different physical properties but identical chemical properties and diamond is the purest form of carbon.
-It occurs in nature and can also be prepared artificially but because of high cost and poor quality, diamonds are seldom made artificially.
-Also, diamond has the highest thermal conductivity of any known substance although it is a bad conductor of electricity.
-In diamond, carbon atoms are sp3-hybridized. Each carbon atom is tetrahedrally linked to four neighbouring carbon atoms through four strong sigma covalent bonds. This network extends in three dimensions and is very rigid.
-Diamond exists as a three-dimensional network solid, so it is the hardest substance with high density and melting point.
Therefore, from above we can easily conclude that option A is the correct option to the given question.
Note:
- It should be remembered to you that diamond is a bad conductor of electricity because all the electrons are firmly held in C-C covalent bonds, so there are no free electrons in a diamond crystal.
- Also, you should remember that because of its hardness, diamond is used for cutting glasses.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

