
The even function is
A. $ f(x) = \dfrac{{[{a^x} + {a^{ - x}}]}}{{[{a^x} - {a^{ - x}}]}} $
B. $ f(x) = \dfrac{{[{a^x} + 1]}}{{[{a^x} - 1]}} $
C. $ f(x) = x\left[ {\dfrac{{[{a^x} - 1]}}{{[{a^x} + 1]}}} \right] $
D. $ f(x) = {\log _2}(x + \sqrt {{x^2} + 1} ) $
Answer
521.4k+ views
Hint: A function, $ f(x) $ is considered to be even when $ f(x) = f( - x) $ . Therefore, to check whether the given function is even or odd, then simply replace $ x $ by $ - x $ and check the equality.
If the condition of $ f(x) = f( - x) $ is satisfied then it is an even function and if $ f(x) = - f( - x) $ , then that function is an odd function.
Complete step by step solution:
Let's use one by one to evaluate all the given functions by substituting $ - x $ in place of $ x $ .
In the (A) option,
$ f(x) = \dfrac{{[{a^x} + {a^{ - x}}]}}{{[{a^x} - {a^{ - x}}]}} $
Now replace $ x $ by $ - x $
$ \Rightarrow f( - x) = \dfrac{{[{a^{ - x}} + {a^x}]}}{{[{a^{ - x}} - {a^x}]}} $
$ \Rightarrow f( - x) = \dfrac{{\left[ {\dfrac{1}{{{a^x}}} + {a^x}} \right]}}{{\left[ {\dfrac{1}{{{a^x}}} - {a^x}} \right]}} $
$ \Rightarrow f( - x) = \dfrac{{\left[ {\dfrac{{1 + {a^{2x}}}}{{{a^x}}}} \right]}}{{\left[ {\dfrac{{1 - {a^{2x}}}}{{{a^x}}}} \right]}} $
$ \Rightarrow f( - x) = \dfrac{{\left[ {1 + {a^{2x}}} \right]}}{{\left[ {1 - {a^{2x}}} \right]}} \ne f(x) $
Hence option (1) is NOT an even function.
Now, evaluate option (B)
Replace $ x $ by $ - x $
$ \Rightarrow f(x) = \dfrac{{[{a^x} + 1]}}{{[{a^x} - 1]}} $
$ \Rightarrow f( - x) = \dfrac{{[{a^{ - x}} + 1]}}{{[{a^{ - x}} - 1]}} $
$ \Rightarrow f( - x) = \dfrac{{\left[ {\dfrac{1}{{{a^x}}} + 1} \right]}}{{\left[ {\dfrac{1}{{{a^x}}} - 1} \right]}} $
\[ \Rightarrow f( - x) = \dfrac{{\left[ {\dfrac{{1 + {a^x}}}{{{a^x}}}} \right]}}{{\left[ {\dfrac{{1 - {a^x}}}{{{a^x}}}} \right]}}\]
\[ \Rightarrow f( - x) = \dfrac{{\left[ {1 + {a^x}} \right]}}{{\left[ {1 - {a^x}} \right]}} = - f(x)\]
Hence option (2) Is an odd function.
Further, let us evaluate option (C)
Replace $ x $ by $ - x $
$ \Rightarrow f(x) = x\left[ {\dfrac{{[{a^x} - 1]}}{{[{a^x} + 1]}}} \right] $
$ \Rightarrow f( - x) = - x\left[ {\dfrac{{[{a^{ - x}} - 1]}}{{[{a^{ - x}} + 1]}}} \right] $
$ \Rightarrow f( - x) = - x\left[ {\dfrac{{\left[ {\dfrac{1}{{{a^x}}} - 1} \right]}}{{\left[ {\dfrac{1}{{{a^x}}} + 1} \right]}}} \right] $
$ \Rightarrow f( - x) = - x\left[ {\dfrac{{\left[ {\dfrac{{1 - {a^x}}}{{{a^x}}}} \right]}}{{\left[ {\dfrac{{1 + {a^x}}}{{{a^x}}}} \right]}}} \right] $
$ \Rightarrow f( - x) = - x\left[ {\dfrac{{[1 - {a^x}]}}{{[1 + {a^x}]}}} \right] $
$ \Rightarrow f( - x) = x\left[ {\dfrac{{[{a^x} - 1]}}{{[1 + {a^x}]}}} \right] = f(x) $
Hence, option (3) satisfies the condition of even functions, therefore, option (3) is the correct answer.
We can also check option (D) in the similar way by replacing $ x $ by $ - x $
$ \Rightarrow f(x) = {\log _2}(x + \sqrt {{x^2} + 1} ) $
$ \Rightarrow f( - x) = {\log _2}( - x + \sqrt {{{( - x)}^2} + 1} ) $
$ \Rightarrow f( - x) = {\log _2}( - x + \sqrt {{{(x)}^2} + 1} ) \ne f(x) $
Hence, this function is neither even nor odd.
Note: We can also find the even and odd function by graphs. If a graph is symmetrical about the y- axis, then the function is even and if a graph is symmetrical about the origin, then the function is odd. If a graph is not symmetrical about the y-axis nor the origin, the function is neither even, nor odd.
If the condition of $ f(x) = f( - x) $ is satisfied then it is an even function and if $ f(x) = - f( - x) $ , then that function is an odd function.
Complete step by step solution:
Let's use one by one to evaluate all the given functions by substituting $ - x $ in place of $ x $ .
In the (A) option,
$ f(x) = \dfrac{{[{a^x} + {a^{ - x}}]}}{{[{a^x} - {a^{ - x}}]}} $
Now replace $ x $ by $ - x $
$ \Rightarrow f( - x) = \dfrac{{[{a^{ - x}} + {a^x}]}}{{[{a^{ - x}} - {a^x}]}} $
$ \Rightarrow f( - x) = \dfrac{{\left[ {\dfrac{1}{{{a^x}}} + {a^x}} \right]}}{{\left[ {\dfrac{1}{{{a^x}}} - {a^x}} \right]}} $
$ \Rightarrow f( - x) = \dfrac{{\left[ {\dfrac{{1 + {a^{2x}}}}{{{a^x}}}} \right]}}{{\left[ {\dfrac{{1 - {a^{2x}}}}{{{a^x}}}} \right]}} $
$ \Rightarrow f( - x) = \dfrac{{\left[ {1 + {a^{2x}}} \right]}}{{\left[ {1 - {a^{2x}}} \right]}} \ne f(x) $
Hence option (1) is NOT an even function.
Now, evaluate option (B)
Replace $ x $ by $ - x $
$ \Rightarrow f(x) = \dfrac{{[{a^x} + 1]}}{{[{a^x} - 1]}} $
$ \Rightarrow f( - x) = \dfrac{{[{a^{ - x}} + 1]}}{{[{a^{ - x}} - 1]}} $
$ \Rightarrow f( - x) = \dfrac{{\left[ {\dfrac{1}{{{a^x}}} + 1} \right]}}{{\left[ {\dfrac{1}{{{a^x}}} - 1} \right]}} $
\[ \Rightarrow f( - x) = \dfrac{{\left[ {\dfrac{{1 + {a^x}}}{{{a^x}}}} \right]}}{{\left[ {\dfrac{{1 - {a^x}}}{{{a^x}}}} \right]}}\]
\[ \Rightarrow f( - x) = \dfrac{{\left[ {1 + {a^x}} \right]}}{{\left[ {1 - {a^x}} \right]}} = - f(x)\]
Hence option (2) Is an odd function.
Further, let us evaluate option (C)
Replace $ x $ by $ - x $
$ \Rightarrow f(x) = x\left[ {\dfrac{{[{a^x} - 1]}}{{[{a^x} + 1]}}} \right] $
$ \Rightarrow f( - x) = - x\left[ {\dfrac{{[{a^{ - x}} - 1]}}{{[{a^{ - x}} + 1]}}} \right] $
$ \Rightarrow f( - x) = - x\left[ {\dfrac{{\left[ {\dfrac{1}{{{a^x}}} - 1} \right]}}{{\left[ {\dfrac{1}{{{a^x}}} + 1} \right]}}} \right] $
$ \Rightarrow f( - x) = - x\left[ {\dfrac{{\left[ {\dfrac{{1 - {a^x}}}{{{a^x}}}} \right]}}{{\left[ {\dfrac{{1 + {a^x}}}{{{a^x}}}} \right]}}} \right] $
$ \Rightarrow f( - x) = - x\left[ {\dfrac{{[1 - {a^x}]}}{{[1 + {a^x}]}}} \right] $
$ \Rightarrow f( - x) = x\left[ {\dfrac{{[{a^x} - 1]}}{{[1 + {a^x}]}}} \right] = f(x) $
Hence, option (3) satisfies the condition of even functions, therefore, option (3) is the correct answer.
We can also check option (D) in the similar way by replacing $ x $ by $ - x $
$ \Rightarrow f(x) = {\log _2}(x + \sqrt {{x^2} + 1} ) $
$ \Rightarrow f( - x) = {\log _2}( - x + \sqrt {{{( - x)}^2} + 1} ) $
$ \Rightarrow f( - x) = {\log _2}( - x + \sqrt {{{(x)}^2} + 1} ) \ne f(x) $
Hence, this function is neither even nor odd.
Note: We can also find the even and odd function by graphs. If a graph is symmetrical about the y- axis, then the function is even and if a graph is symmetrical about the origin, then the function is odd. If a graph is not symmetrical about the y-axis nor the origin, the function is neither even, nor odd.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

