
The equivalent capacitance between A and B is
(A)C
(B) 3C
(C) 9C
(D) 2C

Answer
463.8k+ views
Hint: For finding equivalent capacitance of the network, check the connections made i.e. capacitances which are in series combination and in parallel combination. Then apply the formula for net capacitance which is for series, the formula for net capacitance is given as
$\dfrac{{\text{1}}}{{{{\text{C}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{2}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{3}}}}}{\text{ + }}....{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{n}}}}}$
And for parallel combination, the formula for net capacitance is given as
${{\text{C}}_{{\text{net}}}}{\text{ = }}{{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_{\text{2}}}{\text{ + }}{{\text{C}}_{\text{3}}}{\text{ + }}....{\text{ + }}{{\text{C}}_{\text{n}}}$
Complete step by step solution:
First three capacitors having capacitance C each are arranged in parallel combination and last capacitor having capacitance 6 C is arranged in series with them.
Equivalent diagram is shown below
Now, finding capacitance for first 3 capacitors having capacitance C each arranged in parallel combination. The formula for parallel combination, the formula for net capacitance is given as
${{\text{C}}_{{\text{net}}}}{\text{ = }}{{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_{\text{2}}}{\text{ + }}{{\text{C}}_{\text{3}}}{\text{ + }}....{\text{ + }}{{\text{C}}_{\text{n}}}$
Here, only three capacitances are there so formula can be written as
${{\text{C}}_{{\text{net}}}}{\text{ = }}{{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_{\text{2}}}{\text{ + }}{{\text{C}}_{\text{3}}}$
According to the question, ${{\text{C}}_{\text{1}}}{\text{ = }}{{\text{C}}_{\text{2}}}{\text{ = }}{{\text{C}}_{\text{3}}}{\text{ = C}}$
Now substituting the value of C1, C2 and C3 in the above formula, we get
$
{{\text{C}}_{{\text{net}}}}{\text{ = C + C + C}} \\
\therefore {{\text{C}}_{{\text{net}}}}{\text{ = 3C}} \\
$
Now, capacitor having capacitance is arranged in series combination with${{\text{C}}_{{\text{net}}}}$.
For series combination, the formula for net capacitance is given as
$\dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{2}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{3}}}}}{\text{ + }}....{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{n}}}}}$
Here, only two capacitances are there so formula can be written as
$\dfrac{{\text{1}}}{{{{\text{C}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{2}}}}}$
According to the question, $\dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{C}}_{{\text{net}}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{\text{6C}}}}$
Substituting the value of ${{\text{C}}_{{\text{net}}}}$in above formula, we get
$
\dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{3C}}}}{\text{ + }}\dfrac{{\text{1}}}{{{\text{6C}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{3}}}{{{\text{6C}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{1}{{{\text{2C}}}} \\
\therefore {\text{ C}}{{\text{'}}_{{\text{net}}}} = {\text{2C}} \\
$
So, the equivalent capacitance between A and B is 2C.
Therefore, option (D) is the correct choice.
Note:
Capacitance is the ability of a capacitor to store the charge.When charge is given to a conductor then its potential increases. SI unit of capacitance is farad (abbreviated F). CGS unit of capacitance is statfarad (abbreviated statF).
$\dfrac{{\text{1}}}{{{{\text{C}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{2}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{3}}}}}{\text{ + }}....{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{n}}}}}$
And for parallel combination, the formula for net capacitance is given as
${{\text{C}}_{{\text{net}}}}{\text{ = }}{{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_{\text{2}}}{\text{ + }}{{\text{C}}_{\text{3}}}{\text{ + }}....{\text{ + }}{{\text{C}}_{\text{n}}}$
Complete step by step solution:
First three capacitors having capacitance C each are arranged in parallel combination and last capacitor having capacitance 6 C is arranged in series with them.
Equivalent diagram is shown below

Now, finding capacitance for first 3 capacitors having capacitance C each arranged in parallel combination. The formula for parallel combination, the formula for net capacitance is given as
${{\text{C}}_{{\text{net}}}}{\text{ = }}{{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_{\text{2}}}{\text{ + }}{{\text{C}}_{\text{3}}}{\text{ + }}....{\text{ + }}{{\text{C}}_{\text{n}}}$
Here, only three capacitances are there so formula can be written as
${{\text{C}}_{{\text{net}}}}{\text{ = }}{{\text{C}}_{\text{1}}}{\text{ + }}{{\text{C}}_{\text{2}}}{\text{ + }}{{\text{C}}_{\text{3}}}$
According to the question, ${{\text{C}}_{\text{1}}}{\text{ = }}{{\text{C}}_{\text{2}}}{\text{ = }}{{\text{C}}_{\text{3}}}{\text{ = C}}$
Now substituting the value of C1, C2 and C3 in the above formula, we get
$
{{\text{C}}_{{\text{net}}}}{\text{ = C + C + C}} \\
\therefore {{\text{C}}_{{\text{net}}}}{\text{ = 3C}} \\
$
Now, capacitor having capacitance is arranged in series combination with${{\text{C}}_{{\text{net}}}}$.
For series combination, the formula for net capacitance is given as
$\dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{2}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{3}}}}}{\text{ + }}....{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{n}}}}}$
Here, only two capacitances are there so formula can be written as
$\dfrac{{\text{1}}}{{{{\text{C}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{1}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{{\text{C}}_{\text{2}}}}}$
According to the question, $\dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{{\text{C}}_{{\text{net}}}}}}{\text{ + }}\dfrac{{\text{1}}}{{{\text{6C}}}}$
Substituting the value of ${{\text{C}}_{{\text{net}}}}$in above formula, we get
$
\dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{3C}}}}{\text{ + }}\dfrac{{\text{1}}}{{{\text{6C}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{{\text{3}}}{{{\text{6C}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{{\text{C}}{{\text{'}}_{{\text{net}}}}}}{\text{ = }}\dfrac{1}{{{\text{2C}}}} \\
\therefore {\text{ C}}{{\text{'}}_{{\text{net}}}} = {\text{2C}} \\
$
So, the equivalent capacitance between A and B is 2C.
Therefore, option (D) is the correct choice.
Note:
Capacitance is the ability of a capacitor to store the charge.When charge is given to a conductor then its potential increases. SI unit of capacitance is farad (abbreviated F). CGS unit of capacitance is statfarad (abbreviated statF).
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
