
The equation of X-axis is.
\[(a)\,\dfrac{X}{1}=\dfrac{Y}{0}=\dfrac{Z}{0}\]
\[(b)\,\dfrac{X}{0}=\dfrac{Y}{1}=\dfrac{Z}{1}\]
\[(c)\,\dfrac{X}{1}=\dfrac{Y}{1}=\dfrac{Z}{1}\]
(d) None of these
Answer
595.2k+ views
Hint: In this question, we have to write the equation of x-axis in 3d plane. The basic equation of any line is represented by the equation: \[\,\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}=r\].
Complete Complete step by step answer:
We can represent any point(P) on the line as follows: \[P\left( {{x}_{1}}+ar,{{y}_{1}}+br,{{z}_{1}}+cr \right)\], where ‘r’ can have any value. The vector form of the line can be represented as: \[\vec{z}=\vec{p}+r\vec{q}\].
Now, we can start the solution as we have enough information. As we have to write the equation of x-axis in 3d, we must know the points through which it passes. We can determine that point easily. As we know, it is an x-axis, the y-component and z-component would always be zero. We can also say that the x-axis passes through the origin (0,0,0). Also, let us consider the values of x as 1, then another point through which the x-axis passes can be (1,0,0). So, now we have two points: \[{{x}_{1}}\left( 1,0,0 \right)\] and \[{{x}_{2}}\left( 0,0,0 \right)\]. Now, we can substitute the points in the equation of a line. So, the equation of the x-axis becomes:
\[\,\dfrac{x-0}{1-0}=\dfrac{y-0}{0-0}=\dfrac{z-0}{0-0}\]
After simplification, we get:
\[\begin{align}
& \,\dfrac{x}{1}=\dfrac{y}{0}=\dfrac{z}{0} \\
& \Rightarrow \dfrac{X}{1}=\dfrac{Y}{0}=\dfrac{Z}{0} \\
\end{align}\]
From the above options, option (a) matches our answer. Hence, option (a) is correct.
Note: The alternate method for solving these types of questions is checking the options one by one and eliminating the wrong ones. This method is faster but we should know the points that satisfy the line. Since we have to find the equation of x-axis, we can easily choose option (a) as the correct answer because y and z coordinates would be zero.
Complete Complete step by step answer:
We can represent any point(P) on the line as follows: \[P\left( {{x}_{1}}+ar,{{y}_{1}}+br,{{z}_{1}}+cr \right)\], where ‘r’ can have any value. The vector form of the line can be represented as: \[\vec{z}=\vec{p}+r\vec{q}\].
Now, we can start the solution as we have enough information. As we have to write the equation of x-axis in 3d, we must know the points through which it passes. We can determine that point easily. As we know, it is an x-axis, the y-component and z-component would always be zero. We can also say that the x-axis passes through the origin (0,0,0). Also, let us consider the values of x as 1, then another point through which the x-axis passes can be (1,0,0). So, now we have two points: \[{{x}_{1}}\left( 1,0,0 \right)\] and \[{{x}_{2}}\left( 0,0,0 \right)\]. Now, we can substitute the points in the equation of a line. So, the equation of the x-axis becomes:
\[\,\dfrac{x-0}{1-0}=\dfrac{y-0}{0-0}=\dfrac{z-0}{0-0}\]
After simplification, we get:
\[\begin{align}
& \,\dfrac{x}{1}=\dfrac{y}{0}=\dfrac{z}{0} \\
& \Rightarrow \dfrac{X}{1}=\dfrac{Y}{0}=\dfrac{Z}{0} \\
\end{align}\]
From the above options, option (a) matches our answer. Hence, option (a) is correct.
Note: The alternate method for solving these types of questions is checking the options one by one and eliminating the wrong ones. This method is faster but we should know the points that satisfy the line. Since we have to find the equation of x-axis, we can easily choose option (a) as the correct answer because y and z coordinates would be zero.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

