
The equation for standing wave in a stretched string is given by $y=5\sin \left( \dfrac{\pi x}{3} \right)\cos \left( 40\pi t \right)$, where $x$ and $y$ are in cm and $t$ in second. The separation between two consecutive nodes is (in cm):
A.) 1.5
B.) 3
C.) 6
D.) 4
Answer
596.4k+ views
Hint: On a standing wave there are points which have zero vertical displacement always. These points are known as nodes. To find out the nodes form the equation of a standing wave, the displacement should be equated to zero for all time values. The values of the horizontal position, which will satisfy this criterion, will give the position of the nodes.
Formula used:
For $\sin \theta =0$,
$\theta =n\pi $, where n is an integer.
Complete step by step answer:
A standing wave has points on it that have zero vertical displacement at all times. These points are known as nodes. These are essentially the points where maximum destructive interference occurs and hence, the point virtually has no displacement.
The general solution for the position of nodes can be found out from the equation of the standing wave by considering the displacement to be zero at all times and calculating the horizontal positions on the wave which satisfy this criterion.
Hence, let us do that.
The given standing wave equation is,
$y=5\sin \left( \dfrac{\pi x}{3} \right)\cos \left( 40\pi t \right)$
We will consider$\cos \left( 40\pi t \right)$for making the displacement zero, since we have to find out the position on the wave for which $y$ is zero regardless of the time $t$.
Hence, now putting $y=0$, we get,
$0=5\sin \left( \dfrac{\pi x}{3} \right)\cos \left( 40\pi t \right)$
Not considering $\cos \left( 40\pi t \right)=0$ as explained above, we get,
$\sin \left( \dfrac{\pi x}{3} \right)$ --(1)
Now, for $\sin \theta =0$,
$\theta =n\pi $, where n is an integer.
Using this in (1), we get,
$\dfrac{\pi x}{3}=n\pi $
$\therefore x=3n$--(2)
where n is an integer.
Hence, nodes are found at $x=3n$ for $n=1,2,3....$
Therefore, the distance between two nodes is given by, the difference in the positions of two consecutive nodes at ${{x}_{n}}$ and ${{x}_{n+1}}$
Therefore, using (2), we get,
${{x}_{n+1}}-{{x}_{n}}=3\left( n+1 \right)-3n=3n+3-3n=3cm$
Hence, the distance between two consecutive nodes is $3cm$.
Therefore, the correct option is B) $3cm$.
Note: Students often get confused between nodes and antinodes and which one actually corresponds to the condition of zero displacement on the standing wave and which one for maximum displacement. An easy way to remember, is to relate the word ‘node’ with ‘none’ (both of them are similar in their spellings) implying that the displacement at a ‘node’ is ‘none’ (zero) and antinodes obviously being the opposite have maximum displacement (anti-none).
Formula used:
For $\sin \theta =0$,
$\theta =n\pi $, where n is an integer.
Complete step by step answer:
A standing wave has points on it that have zero vertical displacement at all times. These points are known as nodes. These are essentially the points where maximum destructive interference occurs and hence, the point virtually has no displacement.
The general solution for the position of nodes can be found out from the equation of the standing wave by considering the displacement to be zero at all times and calculating the horizontal positions on the wave which satisfy this criterion.
Hence, let us do that.
The given standing wave equation is,
$y=5\sin \left( \dfrac{\pi x}{3} \right)\cos \left( 40\pi t \right)$
We will consider$\cos \left( 40\pi t \right)$for making the displacement zero, since we have to find out the position on the wave for which $y$ is zero regardless of the time $t$.
Hence, now putting $y=0$, we get,
$0=5\sin \left( \dfrac{\pi x}{3} \right)\cos \left( 40\pi t \right)$
Not considering $\cos \left( 40\pi t \right)=0$ as explained above, we get,
$\sin \left( \dfrac{\pi x}{3} \right)$ --(1)
Now, for $\sin \theta =0$,
$\theta =n\pi $, where n is an integer.
Using this in (1), we get,
$\dfrac{\pi x}{3}=n\pi $
$\therefore x=3n$--(2)
where n is an integer.
Hence, nodes are found at $x=3n$ for $n=1,2,3....$
Therefore, the distance between two nodes is given by, the difference in the positions of two consecutive nodes at ${{x}_{n}}$ and ${{x}_{n+1}}$
Therefore, using (2), we get,
${{x}_{n+1}}-{{x}_{n}}=3\left( n+1 \right)-3n=3n+3-3n=3cm$
Hence, the distance between two consecutive nodes is $3cm$.
Therefore, the correct option is B) $3cm$.
Note: Students often get confused between nodes and antinodes and which one actually corresponds to the condition of zero displacement on the standing wave and which one for maximum displacement. An easy way to remember, is to relate the word ‘node’ with ‘none’ (both of them are similar in their spellings) implying that the displacement at a ‘node’ is ‘none’ (zero) and antinodes obviously being the opposite have maximum displacement (anti-none).
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

