
The energy stored in a capacitor of capacitance C having a charge Q under a potential V is:
(a) $\dfrac{1}{2}{Q^2}V$
(b) $\dfrac{1}{2}{C^2}V$
(c) $\dfrac{1}{2}\dfrac{{{Q^2}}}{V}$
(d) $\dfrac{1}{2}QV$
(e) $\dfrac{1}{2}CV$
Answer
577.5k+ views
Hint: To derive the energy stored in the capacitor, bring a small test charge element, and then integrate to get total work. The total energy stored by the capacitor is network done in assembling charge on plates of the capacitor.
1. The potential difference between the plates of a capacitor with a charge $q$ and Capacitance $C$:
$V = \dfrac{q}{C}$ …… (1)
where,
$Q$ is the charge on the capacitor,
$C$ is the capacitance of the capacitor.
2. Work done = change in potential energy of two configurations:
$W = V({Q_{final}} - {Q_{in}})$
Writing above expression for infinitesimally small charge $ \Rightarrow dW = Vdq$ …… (A)
Where,
$dq$ is the extra charge added (initially $q$ finally $q+ dq$)
$dW$ is the Work done in adding extra charge $dq$.
$V$ is the instantaneous potential due to the initial charge of $q$.
Complete step by step solution:
Given:
1. The capacitance of capacitor = $C$
2. The potential across the capacitor = $V$
3. The charge on a capacitor = $Q$
To find: The expression for energy stored in the capacitor.
Step 1 of 3:
Let’s say at any random time $t$, the charge is $q$. Bring extra charge $dq$ into the system.
From equation (A), we can say work done in bringing extra charge given by,
$dW = VdQ$ where, $V$ is potential due to already present charge $q$.
Step 2 of 3:
Substitute the value of V from equation (1) we get
$dW = \dfrac{q}{C}dq$
Integrate both sides to get total work done to store charge up to $Q$ units:
\[\int\limits_0^W {dW} = \int\limits_0^Q {\dfrac{q}{C}dq} \]
$W = \dfrac{{{Q^2}}}{{2C}}$ …… (2)
Step 3 of 3:
Substitute the value of C by rearranging equation (1) and putting in equation (2) with q=Q (as finally stored charge) we get,
\[
W = \dfrac{{{Q^2}}}{{2(\dfrac{Q}{V})}} \\
W = \dfrac{{QV}}{2} \\
\]
This work done is stored as potential energy in the capacitor.
The energy stored in the capacitor is $\dfrac{1}{2}QV$. Hence option (D) is the correct answer.
Note: Work done in bringing infinitesimal charge $dq$ (the very first element) is $0$. As there is no repulsion present for the first element. But after this, every next element would be repelled by already present charge would give rise to dW work. Then, we can do the integration to get total work and total charge stored with this work.
1. The potential difference between the plates of a capacitor with a charge $q$ and Capacitance $C$:
$V = \dfrac{q}{C}$ …… (1)
where,
$Q$ is the charge on the capacitor,
$C$ is the capacitance of the capacitor.
2. Work done = change in potential energy of two configurations:
$W = V({Q_{final}} - {Q_{in}})$
Writing above expression for infinitesimally small charge $ \Rightarrow dW = Vdq$ …… (A)
Where,
$dq$ is the extra charge added (initially $q$ finally $q+ dq$)
$dW$ is the Work done in adding extra charge $dq$.
$V$ is the instantaneous potential due to the initial charge of $q$.
Complete step by step solution:
Given:
1. The capacitance of capacitor = $C$
2. The potential across the capacitor = $V$
3. The charge on a capacitor = $Q$
To find: The expression for energy stored in the capacitor.
Step 1 of 3:
Let’s say at any random time $t$, the charge is $q$. Bring extra charge $dq$ into the system.
From equation (A), we can say work done in bringing extra charge given by,
$dW = VdQ$ where, $V$ is potential due to already present charge $q$.
Step 2 of 3:
Substitute the value of V from equation (1) we get
$dW = \dfrac{q}{C}dq$
Integrate both sides to get total work done to store charge up to $Q$ units:
\[\int\limits_0^W {dW} = \int\limits_0^Q {\dfrac{q}{C}dq} \]
$W = \dfrac{{{Q^2}}}{{2C}}$ …… (2)
Step 3 of 3:
Substitute the value of C by rearranging equation (1) and putting in equation (2) with q=Q (as finally stored charge) we get,
\[
W = \dfrac{{{Q^2}}}{{2(\dfrac{Q}{V})}} \\
W = \dfrac{{QV}}{2} \\
\]
This work done is stored as potential energy in the capacitor.
The energy stored in the capacitor is $\dfrac{1}{2}QV$. Hence option (D) is the correct answer.
Note: Work done in bringing infinitesimal charge $dq$ (the very first element) is $0$. As there is no repulsion present for the first element. But after this, every next element would be repelled by already present charge would give rise to dW work. Then, we can do the integration to get total work and total charge stored with this work.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

