Answer

Verified

386.7k+ views

**Hint:**Applying electrified formulas use the given thing , applying integration for both sides there we easily get ${V_1} - {V_2}$ value by putting the values of A and B. In the electrodynamic chapter we have seen questions like this. In this question we ask the potential difference its unit is V.

Formula used:

$dV = - \vec E.d\vec r$

**Complete Step by step solution:**

$dV = - \vec E.d\vec r$

First we have to write given values

$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}\to

{\vec E} = \left( {Ax + B} \right)\hat i$

Constant values are A=20 SI unit and B=10 SI unit. If the potential at x=1 is ${V_2}$ and that at x=−5 is ${V_2}$ , then ${V_1} - {V_2}$ is

$\eqalign{

& \int\limits_{{v_2}}^{{v_1}} {dV = \int\limits_{ - 5}^1 { - \left( {Ax + B} \right)dx} } \cr

& {v_1} - {v_2} = {\left( { - A\dfrac{{{x^2}}}{2} - Bx} \right)^1}_{ - 5} \cr} $

By simplification we get

$\eqalign{

& \Rightarrow {v_1} - {v_2} = \left( { - \dfrac{A}{2} - B} \right) + \left( {\dfrac{A}{2}25 + B( - 5)} \right) \cr

& \Rightarrow {v_1} - {v_2} = 12A - 6B \cr

& \Rightarrow {v_1} - {v_2} = 240 - 60 \cr

& \therefore {v_1} - {v_2} = 180V \cr} $

**Hence, the correct option C.**

**Additional information:**

The negative sign of $dV = - \vec E.d\vec r$this formula shows the direction of E, it is in the direction in which V decreases.

In other words we can say electric field points in the opposite direction to the voltage drop. And it is quite obvious because as you are going in the direction of the electric field you are in a way moving towards negative charges so electric potential is bound to decrease.

We have to practice the derivation of this formula. Then we get a strong hold on to use this formula.

Here we dr is the component of dr in the direction $\hat i$ dr can be either positive or negative depending on which way the external force is displaced. Once this expression becomes an integral then the sign of dr is determined by the limits of integration as we can see here.

**Note:**

If intensity of electric field is non uniform with respect to distance 'r' , over a given space, we have to use this formula for small segments in which considering uniformity of electric field intensity in that segment. And here we have to remember the negative sign of this formula.

Recently Updated Pages

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

Give 10 examples for herbs , shrubs , climbers , creepers

Difference Between Plant Cell and Animal Cell

Name 10 Living and Non living things class 9 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE