
The differentiation \[\dfrac{d}{{dx}}\left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{\left( {x - 2} \right)}}{{\left( {x + 2} \right)}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] \] equal to
(A) \[1\]
(B) \[\dfrac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} - 4} \right)}}\]
(C) \[\dfrac{{\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 4} \right)}}\]
(D) \[{e^x}\dfrac{{\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 4} \right)}}\]
Answer
502.2k+ views
Hint: This question needs knowledge of derivatives and formulas related to it, like, derivative of \[\log (x)\] is \[\dfrac{1}{x}\] , derivative of x is $1$. We should also remember the basic properties of logarithmic function such as \[\log (e) = 1\] , \[\log \left( {{a^n}} \right) = n\log \left( a \right)\] , \[\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right)\] and \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\] . Keep in mind the algebraic property \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] to get to the final answer.
Complete step-by-step answer:
First we let the function as y so that we can write it easily,
Therefore, we have,
\[y = \left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{\left( {x - 2} \right)}}{{\left( {x + 2} \right)}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] \]
Now we apply the logarithmic property \[\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right)\]
\[ \Rightarrow y = \log \left[ {{e^x}} \right] + \log \left[ {{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right] \]
Now, we apply the property that logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\] , we get,
\[ \Rightarrow y = \log \left[ {{e^x}} \right] + \left[ {\log \left[ {{{\left( {x - 2} \right)}^{\dfrac{3}{4}}}} \right] - \log \left[ {{{\left( {x + 2} \right)}^{\dfrac{3}{4}}}} \right] } \right] \]
Now, applying the power rule of logarithm, that is \[\log \left( {{a^n}} \right) = n\log \left( a \right)\] , we get,
\[ \Rightarrow y = \log \left[ {{e^x}} \right] + \left[ {\dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right] \]
We know that, natural logarithm of e is $1$ so we get,
\[ \Rightarrow y = x\log e + \left[ {\dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right] \]
\[ \Rightarrow y = x + \dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)\]
Now, differentiating both sides with respect to x,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {x + \dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right] \]
Applying the addition property of derivative, that is, \[\dfrac{d}{{dx}}[u + v] = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}\]
So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ x \right] + \dfrac{d}{{dx}}\left[ {\dfrac{3}{4}\log \left( {x - 2} \right)} \right] - \dfrac{d}{{dx}}\left[ {\dfrac{3}{4}\log \left( {x + 2} \right)} \right] \]
Now, we know that the derivative of x is $1$ and we can take the constant out of the differentiation. Now, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 1 + \dfrac{3}{4}\left( {\dfrac{{1\left( 1 \right)}}{{x - 2}}} \right) - \dfrac{3}{4}\left( {\dfrac{{1\left( 1 \right)}}{{x + 2}}} \right)\]
On taking LCM in the denominator we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 2} \right)\left( {x + 2} \right) + 3\left( {x + 2} \right) - 3\left( {x - 2} \right)}}{{4\left( {x - 2} \right)\left( {x + 2} \right)}}\]
Applying the algebraic property \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] , we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4} \right) + 3x + 6 - 3x + 6}}{{4\left( {{x^2} - 4} \right)}}\]
Now, on solving we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4} \right) + 12}}{{4\left( {{x^2} - 4} \right)}}\]
Taking $4$ as common in denominator,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4 + 3} \right)}}{{4\left( {{x^2} - 4} \right)}}\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 4} \right)}}\]
Hence, option (C) is the correct answer.
Note: This question requires knowledge of formulas of derivatives like derivative of \[\log (x)\] is \[\dfrac{1}{x}\] , derivative of x is 1. We should also remember the basic logarithmic properties, that is, \[\log (e) = 1\] , \[\log \left( {{a^n}} \right) = n\log \left( a \right)\] , \[\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right)\] and \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\] by heart. Algebraic property \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] should also be kept in mind. Take care while doing the calculations.
Complete step-by-step answer:
First we let the function as y so that we can write it easily,
Therefore, we have,
\[y = \left[ {\log \left\{ {{e^x}{{\left( {\dfrac{{\left( {x - 2} \right)}}{{\left( {x + 2} \right)}}} \right)}^{\dfrac{3}{4}}}} \right\}} \right] \]
Now we apply the logarithmic property \[\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right)\]
\[ \Rightarrow y = \log \left[ {{e^x}} \right] + \log \left[ {{{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)}^{\dfrac{3}{4}}}} \right] \]
Now, we apply the property that logarithm \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\] , we get,
\[ \Rightarrow y = \log \left[ {{e^x}} \right] + \left[ {\log \left[ {{{\left( {x - 2} \right)}^{\dfrac{3}{4}}}} \right] - \log \left[ {{{\left( {x + 2} \right)}^{\dfrac{3}{4}}}} \right] } \right] \]
Now, applying the power rule of logarithm, that is \[\log \left( {{a^n}} \right) = n\log \left( a \right)\] , we get,
\[ \Rightarrow y = \log \left[ {{e^x}} \right] + \left[ {\dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right] \]
We know that, natural logarithm of e is $1$ so we get,
\[ \Rightarrow y = x\log e + \left[ {\dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right] \]
\[ \Rightarrow y = x + \dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)\]
Now, differentiating both sides with respect to x,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {x + \dfrac{3}{4}\log \left( {x - 2} \right) - \dfrac{3}{4}\log \left( {x + 2} \right)} \right] \]
Applying the addition property of derivative, that is, \[\dfrac{d}{{dx}}[u + v] = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}\]
So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ x \right] + \dfrac{d}{{dx}}\left[ {\dfrac{3}{4}\log \left( {x - 2} \right)} \right] - \dfrac{d}{{dx}}\left[ {\dfrac{3}{4}\log \left( {x + 2} \right)} \right] \]
Now, we know that the derivative of x is $1$ and we can take the constant out of the differentiation. Now, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 1 + \dfrac{3}{4}\left( {\dfrac{{1\left( 1 \right)}}{{x - 2}}} \right) - \dfrac{3}{4}\left( {\dfrac{{1\left( 1 \right)}}{{x + 2}}} \right)\]
On taking LCM in the denominator we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 2} \right)\left( {x + 2} \right) + 3\left( {x + 2} \right) - 3\left( {x - 2} \right)}}{{4\left( {x - 2} \right)\left( {x + 2} \right)}}\]
Applying the algebraic property \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] , we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4} \right) + 3x + 6 - 3x + 6}}{{4\left( {{x^2} - 4} \right)}}\]
Now, on solving we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4} \right) + 12}}{{4\left( {{x^2} - 4} \right)}}\]
Taking $4$ as common in denominator,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {{x^2} - 4 + 3} \right)}}{{4\left( {{x^2} - 4} \right)}}\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left( {{x^2} - 1} \right)}}{{\left( {{x^2} - 4} \right)}}\]
Hence, option (C) is the correct answer.
Note: This question requires knowledge of formulas of derivatives like derivative of \[\log (x)\] is \[\dfrac{1}{x}\] , derivative of x is 1. We should also remember the basic logarithmic properties, that is, \[\log (e) = 1\] , \[\log \left( {{a^n}} \right) = n\log \left( a \right)\] , \[\log \left( {ab} \right) = \log \left( a \right) + \log \left( b \right)\] and \[\log \left( {\dfrac{a}{b}} \right) = \log \left( a \right) - \log \left( b \right)\] by heart. Algebraic property \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] should also be kept in mind. Take care while doing the calculations.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

