
The differential equation representing the family of curves \[{y^2} = 2c\left( {x + \sqrt c } \right)\], where \[c\] is a positive perimeter, is of
A. Order 1, degree 3
B. Order 2, degree 3
C. Degree 3, order 2
D. None of these
Answer
582.3k+ views
Hint: Here we will proceed by differentiating on both sides with respective to \[x\] and from this we evaluate the value of the constant \[c\]. Further substitute this value in the given family of curves to get the required solution of the given problem.
Complete step-by-step answer:
Given family of curves is \[{y^2} = 2c\left( {x + \sqrt c } \right)..............................................................\left( 1 \right)\]
Differentiating \[{y^2} = 2c\left( {x + \sqrt c } \right)\] on both sides w.r.t \[x\] we have
\[
\Rightarrow \dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {2c\left( {x + \sqrt c } \right)} \right) \\
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 2c\dfrac{d}{{dx}}\left( {x + \sqrt c } \right) \\
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 2c\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\sqrt c } \right)} \right] \\
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 2c\left[ {1 + 0} \right] \\
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 2c \\
\therefore c = y\dfrac{{dy}}{{dx}}.....................................................................\left( 2 \right) \\
\]
Substituting equation (2) in equation (1), we have
\[
\Rightarrow {y^2} = 2\left( {y\dfrac{{dy}}{{dx}}} \right)\left( {x + \sqrt {y\dfrac{{dy}}{{dx}}} } \right) \\
\Rightarrow {y^2} = 2xy\dfrac{{dy}}{{dx}} + 2x\dfrac{{dy}}{{dx}}\sqrt {y\dfrac{{dy}}{{dx}}} \\
\Rightarrow {y^2} = 2xy\dfrac{{dy}}{{dx}} + 2x\sqrt y {\left( {\dfrac{{dy}}{{dx}}} \right)^{\dfrac{3}{2}}} \\
\Rightarrow {y^2} - 2xy\dfrac{{dy}}{{dx}} = 2x\sqrt y {\left( {\dfrac{{dy}}{{dx}}} \right)^{\dfrac{3}{2}}} \\
\]
Squaring on both sides, we get
\[
\Rightarrow {\left( {{y^2} - 2xy\dfrac{{dy}}{{dx}}} \right)^2} = {\left( {2x\sqrt y {{\left( {\dfrac{{dy}}{{dx}}} \right)}^{\dfrac{3}{2}}}} \right)^2} \\
\Rightarrow {y^4} - 4x{y^3}\dfrac{{dy}}{{dx}} + 4{x^2}{y^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} = 4{x^2}y{\left( {\dfrac{{dy}}{{dx}}} \right)^3} \\
\Rightarrow 4{x^2}y{\left( {\dfrac{{dy}}{{dx}}} \right)^3} - 4{x^2}{y^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} + 4x{y^3}\dfrac{{dy}}{{dx}} - {y^4} = 0 \\
\]
Hence the solution of the given family of curves is \[4{x^2}y{\left( {\dfrac{{dy}}{{dx}}} \right)^3} - 4{x^2}{y^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} + 4x{y^3}\dfrac{{dy}}{{dx}} - {y^4} = 0\]
From the above differential equation clearly, the order is 1 and degree is 3.
Thus, the correct option is A. Order 1, degree 3
So, the correct answer is “Option A”.
Note: The degree of the differential equation is represented by the power of the highest order derivative of the given differential equation. Order of a differential equation is the highest derivative present in the given differential equation.
Complete step-by-step answer:
Given family of curves is \[{y^2} = 2c\left( {x + \sqrt c } \right)..............................................................\left( 1 \right)\]
Differentiating \[{y^2} = 2c\left( {x + \sqrt c } \right)\] on both sides w.r.t \[x\] we have
\[
\Rightarrow \dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {2c\left( {x + \sqrt c } \right)} \right) \\
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 2c\dfrac{d}{{dx}}\left( {x + \sqrt c } \right) \\
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 2c\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\sqrt c } \right)} \right] \\
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 2c\left[ {1 + 0} \right] \\
\Rightarrow 2y\dfrac{{dy}}{{dx}} = 2c \\
\therefore c = y\dfrac{{dy}}{{dx}}.....................................................................\left( 2 \right) \\
\]
Substituting equation (2) in equation (1), we have
\[
\Rightarrow {y^2} = 2\left( {y\dfrac{{dy}}{{dx}}} \right)\left( {x + \sqrt {y\dfrac{{dy}}{{dx}}} } \right) \\
\Rightarrow {y^2} = 2xy\dfrac{{dy}}{{dx}} + 2x\dfrac{{dy}}{{dx}}\sqrt {y\dfrac{{dy}}{{dx}}} \\
\Rightarrow {y^2} = 2xy\dfrac{{dy}}{{dx}} + 2x\sqrt y {\left( {\dfrac{{dy}}{{dx}}} \right)^{\dfrac{3}{2}}} \\
\Rightarrow {y^2} - 2xy\dfrac{{dy}}{{dx}} = 2x\sqrt y {\left( {\dfrac{{dy}}{{dx}}} \right)^{\dfrac{3}{2}}} \\
\]
Squaring on both sides, we get
\[
\Rightarrow {\left( {{y^2} - 2xy\dfrac{{dy}}{{dx}}} \right)^2} = {\left( {2x\sqrt y {{\left( {\dfrac{{dy}}{{dx}}} \right)}^{\dfrac{3}{2}}}} \right)^2} \\
\Rightarrow {y^4} - 4x{y^3}\dfrac{{dy}}{{dx}} + 4{x^2}{y^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} = 4{x^2}y{\left( {\dfrac{{dy}}{{dx}}} \right)^3} \\
\Rightarrow 4{x^2}y{\left( {\dfrac{{dy}}{{dx}}} \right)^3} - 4{x^2}{y^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} + 4x{y^3}\dfrac{{dy}}{{dx}} - {y^4} = 0 \\
\]
Hence the solution of the given family of curves is \[4{x^2}y{\left( {\dfrac{{dy}}{{dx}}} \right)^3} - 4{x^2}{y^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} + 4x{y^3}\dfrac{{dy}}{{dx}} - {y^4} = 0\]
From the above differential equation clearly, the order is 1 and degree is 3.
Thus, the correct option is A. Order 1, degree 3
So, the correct answer is “Option A”.
Note: The degree of the differential equation is represented by the power of the highest order derivative of the given differential equation. Order of a differential equation is the highest derivative present in the given differential equation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

