Answer
Verified
447k+ views
Hint: Dielectric strength is the breaking point of a capacitor. It can be defined as the maximum voltage or electric field required to produce a dielectric breakdown. If distance between the plates of a capacitor is d and breakdown electric field is E then breakdown voltage is given by
$V=E.d$
Root mean square voltage of an AC source having maximum value of voltage ${{V}_{0}}$ is
${{V}_{rms}}=\dfrac{{{V}_{0}}}{\sqrt{2}}$
Formula used:
$V=E.d$ and
${{V}_{rms}}=\dfrac{{{V}_{0}}}{\sqrt{2}}$
Complete answer:
The dielectric strength or electrical strength of an insulating material is defined as the maximum electric field required to destroy dielectric or insulating property of the medium so after dielectric breakdown the charges can flow through the dielectric. It is expressed as the maximum voltage required to produce dielectric breakdown. It is expressed as Volts per unit thickness or distance between the plates.
Given dielectric strength of air $E=3.0\times {{10}^{8}}$V/m.
A parallel plate air capacitor has area $20c{{m}^{2}}$ and plate separation $\sqrt{2}mm$,i.e.
$A=20c{{m}^{2}}$ and $d=\sqrt{2}mm=\sqrt{2}\times {{10}^{-3}}m$
Dielectric breakdown voltage of the capacitor is given by
$V=E.d$ where E=dielectric strength of air.
So,$V=3.0\times {{10}^{8}}{}^{V}/{}_{m}\times \sqrt{2}\times {{10}^{-3}}m=3\sqrt{2}\times {{10}^{5}}$ Volts
If an AC source is connected to this capacitor then it’s maximum voltage value should be equal to or less than $3\sqrt{2}\times {{10}^{5}}$ Volts.
The root mean square voltage of a AC source having maximum voltage V is given by
${{V}_{rms}}=\dfrac{V}{\sqrt{2}}$
Here given,$V=3\sqrt{2}\times {{10}^{5}}$Volts. So
\[{{V}_{rms}}=\dfrac{3\sqrt{2}\times {{10}^{5}}}{\sqrt{2}}=3\times {{10}^{5}}\]Volts
Note:
For problems like this first calculate maximum value or peak value of current or potential. From the peak value you can calculate root mean square value of current and voltage. Also all units should be in S.I units. Also after dielectric breakdown there is some charge flow inside the dielectric. So the peak value of the electric field should be noted for which dielectric breakdown occurs. Charge flow will increase if you increase Electric field beyond the breakdown value.
$V=E.d$
Root mean square voltage of an AC source having maximum value of voltage ${{V}_{0}}$ is
${{V}_{rms}}=\dfrac{{{V}_{0}}}{\sqrt{2}}$
Formula used:
$V=E.d$ and
${{V}_{rms}}=\dfrac{{{V}_{0}}}{\sqrt{2}}$
Complete answer:
The dielectric strength or electrical strength of an insulating material is defined as the maximum electric field required to destroy dielectric or insulating property of the medium so after dielectric breakdown the charges can flow through the dielectric. It is expressed as the maximum voltage required to produce dielectric breakdown. It is expressed as Volts per unit thickness or distance between the plates.
Given dielectric strength of air $E=3.0\times {{10}^{8}}$V/m.
A parallel plate air capacitor has area $20c{{m}^{2}}$ and plate separation $\sqrt{2}mm$,i.e.
$A=20c{{m}^{2}}$ and $d=\sqrt{2}mm=\sqrt{2}\times {{10}^{-3}}m$
Dielectric breakdown voltage of the capacitor is given by
$V=E.d$ where E=dielectric strength of air.
So,$V=3.0\times {{10}^{8}}{}^{V}/{}_{m}\times \sqrt{2}\times {{10}^{-3}}m=3\sqrt{2}\times {{10}^{5}}$ Volts
If an AC source is connected to this capacitor then it’s maximum voltage value should be equal to or less than $3\sqrt{2}\times {{10}^{5}}$ Volts.
The root mean square voltage of a AC source having maximum voltage V is given by
${{V}_{rms}}=\dfrac{V}{\sqrt{2}}$
Here given,$V=3\sqrt{2}\times {{10}^{5}}$Volts. So
\[{{V}_{rms}}=\dfrac{3\sqrt{2}\times {{10}^{5}}}{\sqrt{2}}=3\times {{10}^{5}}\]Volts
Note:
For problems like this first calculate maximum value or peak value of current or potential. From the peak value you can calculate root mean square value of current and voltage. Also all units should be in S.I units. Also after dielectric breakdown there is some charge flow inside the dielectric. So the peak value of the electric field should be noted for which dielectric breakdown occurs. Charge flow will increase if you increase Electric field beyond the breakdown value.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE