
The $\dfrac{d}{dx}\left( {{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}} \right)$ is equal to
A. $-\dfrac{1}{4}$
B. $\dfrac{1}{4}$
C. $\dfrac{1}{2}$
D. $-\dfrac{1}{2}$
Answer
499.8k+ views
Hint: We first simplify the term ${{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}$. We multiply $1+\cos \dfrac{x}{2}$ for both numerator and denominator and then use the formula of multiple and submultiple. We get only algebraic term independent of trigonometric terms. We find the differentiation.
Complete step by step answer:
We first need to simplify the expression ${{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}$.We multiply the term $1+\cos \dfrac{x}{2}$ for both numerator and denominator of $\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}$.
So, $\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}\times \dfrac{1+\cos \dfrac{x}{2}}{1+\cos \dfrac{x}{2}}=\dfrac{{{\left( 1+\cos \dfrac{x}{2} \right)}^{2}}}{1-{{\cos }^{2}}\dfrac{x}{2}}=\dfrac{{{\left( 1+\cos \dfrac{x}{2} \right)}^{2}}}{{{\sin }^{2}}\dfrac{x}{2}}$.
We used the identity formula of ${{\sin }^{2}}\dfrac{x}{2}=1-{{\cos }^{2}}\dfrac{x}{2}$.
The root value gives $\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}=\dfrac{1+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}$.
Now we use formula of multiple and submultiple as
\[1+\cos x=2{{\cos }^{2}}\dfrac{x}{2};\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\]
\[\Rightarrow \dfrac{1+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\dfrac{2{{\cos }^{2}}\dfrac{x}{4}}{2\sin \dfrac{x}{4}\cos \dfrac{x}{4}} \\
\Rightarrow \dfrac{1+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\cot \dfrac{x}{4} \\
\Rightarrow \dfrac{1+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\tan \left( \dfrac{\pi }{2}-\dfrac{x}{4} \right)\]
So, \[{{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{2}-\dfrac{x}{4} \right) \right)\]
\[\Rightarrow {{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}=\dfrac{\pi }{2}-\dfrac{x}{4}\].
The differentiation becomes
\[\therefore \dfrac{d}{dx}\left( {{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}} \right)=\dfrac{d}{dx}\left( \dfrac{\pi }{2}-\dfrac{x}{4} \right)=-\dfrac{1}{4}\].
Hence, the correct option is A.
Note: We also can use chain rule where we need to use \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\] and we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step by step answer:
We first need to simplify the expression ${{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}$.We multiply the term $1+\cos \dfrac{x}{2}$ for both numerator and denominator of $\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}$.
So, $\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}\times \dfrac{1+\cos \dfrac{x}{2}}{1+\cos \dfrac{x}{2}}=\dfrac{{{\left( 1+\cos \dfrac{x}{2} \right)}^{2}}}{1-{{\cos }^{2}}\dfrac{x}{2}}=\dfrac{{{\left( 1+\cos \dfrac{x}{2} \right)}^{2}}}{{{\sin }^{2}}\dfrac{x}{2}}$.
We used the identity formula of ${{\sin }^{2}}\dfrac{x}{2}=1-{{\cos }^{2}}\dfrac{x}{2}$.
The root value gives $\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}=\dfrac{1+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}$.
Now we use formula of multiple and submultiple as
\[1+\cos x=2{{\cos }^{2}}\dfrac{x}{2};\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\]
\[\Rightarrow \dfrac{1+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\dfrac{2{{\cos }^{2}}\dfrac{x}{4}}{2\sin \dfrac{x}{4}\cos \dfrac{x}{4}} \\
\Rightarrow \dfrac{1+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\cot \dfrac{x}{4} \\
\Rightarrow \dfrac{1+\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}}=\tan \left( \dfrac{\pi }{2}-\dfrac{x}{4} \right)\]
So, \[{{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{2}-\dfrac{x}{4} \right) \right)\]
\[\Rightarrow {{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}}=\dfrac{\pi }{2}-\dfrac{x}{4}\].
The differentiation becomes
\[\therefore \dfrac{d}{dx}\left( {{\tan }^{-1}}\sqrt{\dfrac{1+\cos \dfrac{x}{2}}{1-\cos \dfrac{x}{2}}} \right)=\dfrac{d}{dx}\left( \dfrac{\pi }{2}-\dfrac{x}{4} \right)=-\dfrac{1}{4}\].
Hence, the correct option is A.
Note: We also can use chain rule where we need to use \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\] and we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

