
The derivative of $ \sin x $ is equal to $ \cos x $ , $ \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x $ and $ \dfrac{d}{{dx}}\left[ {\sin f\left( x \right)} \right] = \cos f\left( x \right) \times \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] $ . Use the above information to find the derivatives of the following.
a. $ \sin {x^2} $
b. $ \sin {x^a} $
c. $ \sin \left( {\log x} \right) $
d. $ {\sin ^{25}}\left( {{x^a}} \right) $
e. $ \sin \left( {\sin {x^7}} \right) $ f. $ \sin \left( {ax + b} \right) $
Answer
574.5k+ views
Hint: The derivative of sine is cosine. But when the sine is applied to another function (can be exponential, logarithmic etc), the derivative will be different. Including the cosine of function, derivative of the function must also be multiplied. Derivatives of Exponential function, logarithmic function, linear function are different. Use this info and below formulas to answer the given question.
Formulas used:
1. $ \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x} $
2. $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}} $
3. $ \dfrac{d}{{dx}}{\left[ {f\left( x \right)} \right]^n} = n.{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{d}{{dx}}f\left( x \right) $
4. $ \dfrac{d}{{dx}}\left( {ax + b} \right) = a $
Complete step by step solution:
We are given that $ \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x $ and $ \dfrac{d}{{dx}}\left[ {\sin f\left( x \right)} \right] = \cos f\left( x \right) \times \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] $ .
Using this we have to find the derivatives of sine functions given.
a. $ \sin {x^2} $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = {x^2} $
Therefore, $ \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times \dfrac{d}{{dx}}\left( {{x^2}} \right) $
We know that $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}} $ , here n = 2.
$
\Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times \left( {2 \times {x^{2 - 1}}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times 2x \\
\therefore \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = 2x.\cos {x^2} \\
$
b. $ \sin {x^a} $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = {x^a} $
Therefore, $ \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times \dfrac{d}{{dx}}\left( {{x^a}} \right) $
We know that $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}} $ , here n = a.
$
\Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times \left( {a \times {x^{a - 1}}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times a.{x^{a - 1}} \\
\therefore \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a} \\
$
c. $ \sin \left( {\log x} \right) $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = \log x $
Therefore, $ \dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \cos \left( {\log x} \right) \times \dfrac{d}{{dx}}\left( {\log x} \right) $
We know that $ \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x} $ , so we are substituting this above.
$
\dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \cos \left( {\log x} \right) \times \dfrac{1}{x} \\
\therefore \dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \dfrac{1}{x}.\cos \left( {\log x} \right) \\
$
d. $ {\sin ^{25}}\left( {{x^a}} \right) $
We can write the given sine function also as $ {\left( {\sin {x^a}} \right)^{25}} $ . It is in the form of $ {\left[ {f\left( x \right)} \right]^n}{\text{ where f}}\left( x \right) = \sin {x^a},n = 25 $
We know that $ \dfrac{d}{{dx}}{\left[ {f\left( x \right)} \right]^n} = n.{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{d}{{dx}}f\left( x \right) $
$ \dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25 \times {\left( {\sin {x^a}} \right)^{25 - 1}} \times \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) $
From the above second solution, we got $ \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a} $
$
\dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25 \times {\left( {\sin {x^a}} \right)^{24}} \times a \times {x^{a - 1}} \times \cos {x^a} \\
\Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25a.{x^{a - 1}}.{\left( {\sin {x^a}} \right)^{24}}\cos {x^a} \\
$
e. $ \sin \left( {\sin {x^7}} \right) $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = \sin {x^7} $
Therefore, $ \dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = \cos \left( {\sin {x^7}} \right) \times \dfrac{d}{{dx}}\left( {\sin {x^7}} \right) $
From the above second solution, we got $ \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a} $ , here a = 7
$
\dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = \cos \left( {\sin {x^7}} \right) \times 7 \times {x^{7 - 1}} \times \cos {x^7} \\
\Rightarrow \dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = 7{x^6}.\cos \left( {\sin {x^7}} \right)\cos {x^7} \\
$
f. $ \sin \left( {ax + b} \right) $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = ax + b $
Therefore, $ \dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = \cos \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right) $
We know that $ \dfrac{d}{{dx}}\left( {ax + b} \right) = a $
So on substituting the value, we get
$
\dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = \cos \left( {ax + b} \right) \times a \\
\Rightarrow \dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = a.\cos \left( {ax + b} \right) \;
$
Note: Be careful with the derivatives of exponential functions, linear functions, logarithmic functions etc. and we might confuse $ {x^a} $ with $ {a^x} $ , so be cautious about this as their derivatives are completely different. Derivative of $ {x^a} $ is $ a.{x^{a - 1}} $ whereas derivative of $ {a^x} $ is $ {a^x}\log a $ . Do not swap the base with exponent as you can see the result might completely go wrong.
Formulas used:
1. $ \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x} $
2. $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}} $
3. $ \dfrac{d}{{dx}}{\left[ {f\left( x \right)} \right]^n} = n.{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{d}{{dx}}f\left( x \right) $
4. $ \dfrac{d}{{dx}}\left( {ax + b} \right) = a $
Complete step by step solution:
We are given that $ \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x $ and $ \dfrac{d}{{dx}}\left[ {\sin f\left( x \right)} \right] = \cos f\left( x \right) \times \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] $ .
Using this we have to find the derivatives of sine functions given.
a. $ \sin {x^2} $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = {x^2} $
Therefore, $ \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times \dfrac{d}{{dx}}\left( {{x^2}} \right) $
We know that $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}} $ , here n = 2.
$
\Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times \left( {2 \times {x^{2 - 1}}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = \cos \left( {{x^2}} \right) \times 2x \\
\therefore \dfrac{d}{{dx}}\left( {\sin {x^2}} \right) = 2x.\cos {x^2} \\
$
b. $ \sin {x^a} $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = {x^a} $
Therefore, $ \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times \dfrac{d}{{dx}}\left( {{x^a}} \right) $
We know that $ \dfrac{d}{{dx}}\left( {{x^n}} \right) = n.{x^{n - 1}} $ , here n = a.
$
\Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times \left( {a \times {x^{a - 1}}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = \cos \left( {{x^a}} \right) \times a.{x^{a - 1}} \\
\therefore \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a} \\
$
c. $ \sin \left( {\log x} \right) $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = \log x $
Therefore, $ \dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \cos \left( {\log x} \right) \times \dfrac{d}{{dx}}\left( {\log x} \right) $
We know that $ \dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x} $ , so we are substituting this above.
$
\dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \cos \left( {\log x} \right) \times \dfrac{1}{x} \\
\therefore \dfrac{d}{{dx}}\left[ {\sin \left( {\log x} \right)} \right] = \dfrac{1}{x}.\cos \left( {\log x} \right) \\
$
d. $ {\sin ^{25}}\left( {{x^a}} \right) $
We can write the given sine function also as $ {\left( {\sin {x^a}} \right)^{25}} $ . It is in the form of $ {\left[ {f\left( x \right)} \right]^n}{\text{ where f}}\left( x \right) = \sin {x^a},n = 25 $
We know that $ \dfrac{d}{{dx}}{\left[ {f\left( x \right)} \right]^n} = n.{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{d}{{dx}}f\left( x \right) $
$ \dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25 \times {\left( {\sin {x^a}} \right)^{25 - 1}} \times \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) $
From the above second solution, we got $ \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a} $
$
\dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25 \times {\left( {\sin {x^a}} \right)^{24}} \times a \times {x^{a - 1}} \times \cos {x^a} \\
\Rightarrow \dfrac{d}{{dx}}\left[ {{{\left( {\sin {x^a}} \right)}^{25}}} \right] = 25a.{x^{a - 1}}.{\left( {\sin {x^a}} \right)^{24}}\cos {x^a} \\
$
e. $ \sin \left( {\sin {x^7}} \right) $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = \sin {x^7} $
Therefore, $ \dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = \cos \left( {\sin {x^7}} \right) \times \dfrac{d}{{dx}}\left( {\sin {x^7}} \right) $
From the above second solution, we got $ \dfrac{d}{{dx}}\left( {\sin {x^a}} \right) = a.{x^{a - 1}}.\cos {x^a} $ , here a = 7
$
\dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = \cos \left( {\sin {x^7}} \right) \times 7 \times {x^{7 - 1}} \times \cos {x^7} \\
\Rightarrow \dfrac{d}{{dx}}\left[ {\sin \left( {\sin {x^7}} \right)} \right] = 7{x^6}.\cos \left( {\sin {x^7}} \right)\cos {x^7} \\
$
f. $ \sin \left( {ax + b} \right) $
On comparing the given sine function with $ \sin f\left( x \right) $ , we get $ f\left( x \right) = ax + b $
Therefore, $ \dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = \cos \left( {ax + b} \right) \times \dfrac{d}{{dx}}\left( {ax + b} \right) $
We know that $ \dfrac{d}{{dx}}\left( {ax + b} \right) = a $
So on substituting the value, we get
$
\dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = \cos \left( {ax + b} \right) \times a \\
\Rightarrow \dfrac{d}{{dx}}\left[ {\sin \left( {ax + b} \right)} \right] = a.\cos \left( {ax + b} \right) \;
$
Note: Be careful with the derivatives of exponential functions, linear functions, logarithmic functions etc. and we might confuse $ {x^a} $ with $ {a^x} $ , so be cautious about this as their derivatives are completely different. Derivative of $ {x^a} $ is $ a.{x^{a - 1}} $ whereas derivative of $ {a^x} $ is $ {a^x}\log a $ . Do not swap the base with exponent as you can see the result might completely go wrong.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

