The derivative of $f\left( \tan x \right)$ with respect to $g\left( \sec x \right)$ at $x=\dfrac{\pi }{4}$, where $f'\left( 1 \right)=2;g'\left( \sqrt{2} \right)=4$ is:
(a) $\dfrac{1}{\sqrt{2}}$
(b) $\sqrt{2}$
(c) 1
(d) 0
Answer
Verified
477.6k+ views
Hint: We have to find the derivative of $f\left( \tan x \right)$ with respect to $g\left( \sec x \right)$ at $x=\dfrac{\pi }{4}$. For that first of all differentiate $f\left( \tan x \right)$ with respect to x then differentiate $g\left( \sec x \right)$ with respect to x and then divide both the results of the differentiation. And after that put $x=\dfrac{\pi }{4}$ in place of x which will give you the required answer.
Complete step-by-step solution:
We are asked to differentiate $f\left( \tan x \right)$ with respect to $g\left( \sec x \right)$ at $x=\dfrac{\pi }{4}$. For that, first of all we are going to derivate $f\left( \tan x \right)$ with respect to x and then differentiate $g\left( \sec x \right)$ with respect to x.
Differentiating $f\left( \tan x \right)$ with respect to x we get,
$\dfrac{df\left( \tan x \right)}{dx}=f'\left( \tan x \right){{\sec }^{2}}x$………. Eq. (1)
We have differentiated the above using chain rule. First of all we have differentiated $f\left( \tan x \right)$ then has multiplied the result of differentiation of $\tan x$ with respect to x.
Differentiating $g\left( \sec x \right)$ with respect to x we get,
$\dfrac{dg\left( \sec x \right)}{dx}=g'\left( \sec x \right)\left( \sec x\tan x \right)$…………. Eq. (2)
The above differentiation is also done using chain rule in the same way as we have shown for $f\left( \tan x \right)$.
Now, dividing eq. (1) by eq. (2) we get,
$\begin{align}
& \dfrac{\dfrac{df\left( \tan x \right)}{dx}}{\dfrac{dg\left( \sec x \right)}{dx}}=\dfrac{f'\left( \tan x \right){{\sec }^{2}}x}{g'\left( \sec x \right)\left( \sec x\tan x \right)} \\
& \Rightarrow \dfrac{df\left( \tan x \right)}{dg\left( \sec x \right)}=\dfrac{f'\left( \tan x \right){{\sec }^{2}}x}{g'\left( \sec x \right)\left( \sec x\tan x \right)} \\
\end{align}$
Now, we have to find the derivative of $f\left( \tan x \right)$ with respect to $g\left( \sec x \right)$ at $x=\dfrac{\pi }{4}$ so substituting $x=\dfrac{\pi }{4}$ in the above equation we get,
$\dfrac{df\left( \tan \dfrac{\pi }{4} \right)}{dg\left( \sec \dfrac{\pi }{4} \right)}=\dfrac{f'\left( \tan \dfrac{\pi }{4} \right){{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{g'\left( \sec \dfrac{\pi }{4} \right)\left( \sec \dfrac{\pi }{4}\tan \dfrac{\pi }{4} \right)}$
We know that,
$\begin{align}
& \tan \dfrac{\pi }{4}=1; \\
& \sec \dfrac{\pi }{4}=\sqrt{2} \\
\end{align}$
Substituting these values in the differentiation equation we get,
$\dfrac{df\left( 1 \right)}{dg\left( \sqrt{2} \right)}=\dfrac{f'\left( 1 \right){{\left( \sqrt{2} \right)}^{2}}}{g'\left( \sqrt{2} \right)\left( \sqrt{2} \right)}$………… Eq. (3)
It is also given in the above problem that:
$f'\left( 1 \right)=2;g'\left( \sqrt{2} \right)=4$
Substituting the above values in eq. (3) we get,
$\begin{align}
& \dfrac{df\left( 1 \right)}{dg\left( \sqrt{2} \right)}=\dfrac{2{{\left( \sqrt{2} \right)}^{2}}}{4\left( \sqrt{2} \right)} \\
& \Rightarrow \dfrac{df\left( 1 \right)}{dg\left( \sqrt{2} \right)}=\dfrac{2\left( 2 \right)}{4\sqrt{2}} \\
\end{align}$
4 will be cancelled from the numerator and denominator and we are left with:
$\dfrac{df\left( 1 \right)}{dg\left( \sqrt{2} \right)}=\dfrac{1}{\sqrt{2}}$
Hence, the differentiation of $f\left( \tan x \right)$ with respect to $g\left( \sec x \right)$ at $x=\dfrac{\pi }{4}$ is $\dfrac{1}{\sqrt{2}}$.
Hence, the correct option is (a).
Note: You might have thought how we know that we should separately differentiate $f\left( \tan x \right)\And g\left( \sec x \right)$ with respect to x and then divide each other because if you put $x=\dfrac{\pi }{4}$ in $f\left( \tan x \right)\And g\left( \sec x \right)$ you will get $f\left( 1 \right)\And g\left( \sqrt{2} \right)$ and if we differentiate both of these we will get values $f'\left( 1 \right)\And g'\left( \sqrt{2} \right)$ and values of $f'\left( 1 \right)\And g'\left( \sqrt{2} \right)$ is already given in the problem.
And the only way to differentiate the following is if we divide dx in numerator and denominator:
$\dfrac{df\left( \tan x \right)}{dg\left( \sec x \right)}$
Dividing dx in numerator and denominator we get,
$\dfrac{\dfrac{df\left( \tan x \right)}{dx}}{\dfrac{dg\left( \sec x \right)}{dx}}$
And the above derivative means we have to separately differentiate $f\left( \tan x \right)\And g\left( \sec x \right)$.
Complete step-by-step solution:
We are asked to differentiate $f\left( \tan x \right)$ with respect to $g\left( \sec x \right)$ at $x=\dfrac{\pi }{4}$. For that, first of all we are going to derivate $f\left( \tan x \right)$ with respect to x and then differentiate $g\left( \sec x \right)$ with respect to x.
Differentiating $f\left( \tan x \right)$ with respect to x we get,
$\dfrac{df\left( \tan x \right)}{dx}=f'\left( \tan x \right){{\sec }^{2}}x$………. Eq. (1)
We have differentiated the above using chain rule. First of all we have differentiated $f\left( \tan x \right)$ then has multiplied the result of differentiation of $\tan x$ with respect to x.
Differentiating $g\left( \sec x \right)$ with respect to x we get,
$\dfrac{dg\left( \sec x \right)}{dx}=g'\left( \sec x \right)\left( \sec x\tan x \right)$…………. Eq. (2)
The above differentiation is also done using chain rule in the same way as we have shown for $f\left( \tan x \right)$.
Now, dividing eq. (1) by eq. (2) we get,
$\begin{align}
& \dfrac{\dfrac{df\left( \tan x \right)}{dx}}{\dfrac{dg\left( \sec x \right)}{dx}}=\dfrac{f'\left( \tan x \right){{\sec }^{2}}x}{g'\left( \sec x \right)\left( \sec x\tan x \right)} \\
& \Rightarrow \dfrac{df\left( \tan x \right)}{dg\left( \sec x \right)}=\dfrac{f'\left( \tan x \right){{\sec }^{2}}x}{g'\left( \sec x \right)\left( \sec x\tan x \right)} \\
\end{align}$
Now, we have to find the derivative of $f\left( \tan x \right)$ with respect to $g\left( \sec x \right)$ at $x=\dfrac{\pi }{4}$ so substituting $x=\dfrac{\pi }{4}$ in the above equation we get,
$\dfrac{df\left( \tan \dfrac{\pi }{4} \right)}{dg\left( \sec \dfrac{\pi }{4} \right)}=\dfrac{f'\left( \tan \dfrac{\pi }{4} \right){{\sec }^{2}}\left( \dfrac{\pi }{4} \right)}{g'\left( \sec \dfrac{\pi }{4} \right)\left( \sec \dfrac{\pi }{4}\tan \dfrac{\pi }{4} \right)}$
We know that,
$\begin{align}
& \tan \dfrac{\pi }{4}=1; \\
& \sec \dfrac{\pi }{4}=\sqrt{2} \\
\end{align}$
Substituting these values in the differentiation equation we get,
$\dfrac{df\left( 1 \right)}{dg\left( \sqrt{2} \right)}=\dfrac{f'\left( 1 \right){{\left( \sqrt{2} \right)}^{2}}}{g'\left( \sqrt{2} \right)\left( \sqrt{2} \right)}$………… Eq. (3)
It is also given in the above problem that:
$f'\left( 1 \right)=2;g'\left( \sqrt{2} \right)=4$
Substituting the above values in eq. (3) we get,
$\begin{align}
& \dfrac{df\left( 1 \right)}{dg\left( \sqrt{2} \right)}=\dfrac{2{{\left( \sqrt{2} \right)}^{2}}}{4\left( \sqrt{2} \right)} \\
& \Rightarrow \dfrac{df\left( 1 \right)}{dg\left( \sqrt{2} \right)}=\dfrac{2\left( 2 \right)}{4\sqrt{2}} \\
\end{align}$
4 will be cancelled from the numerator and denominator and we are left with:
$\dfrac{df\left( 1 \right)}{dg\left( \sqrt{2} \right)}=\dfrac{1}{\sqrt{2}}$
Hence, the differentiation of $f\left( \tan x \right)$ with respect to $g\left( \sec x \right)$ at $x=\dfrac{\pi }{4}$ is $\dfrac{1}{\sqrt{2}}$.
Hence, the correct option is (a).
Note: You might have thought how we know that we should separately differentiate $f\left( \tan x \right)\And g\left( \sec x \right)$ with respect to x and then divide each other because if you put $x=\dfrac{\pi }{4}$ in $f\left( \tan x \right)\And g\left( \sec x \right)$ you will get $f\left( 1 \right)\And g\left( \sqrt{2} \right)$ and if we differentiate both of these we will get values $f'\left( 1 \right)\And g'\left( \sqrt{2} \right)$ and values of $f'\left( 1 \right)\And g'\left( \sqrt{2} \right)$ is already given in the problem.
And the only way to differentiate the following is if we divide dx in numerator and denominator:
$\dfrac{df\left( \tan x \right)}{dg\left( \sec x \right)}$
Dividing dx in numerator and denominator we get,
$\dfrac{\dfrac{df\left( \tan x \right)}{dx}}{\dfrac{dg\left( \sec x \right)}{dx}}$
And the above derivative means we have to separately differentiate $f\left( \tan x \right)\And g\left( \sec x \right)$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Differentiate between internal fertilization and external class 12 biology CBSE
Which animal never drinks water in its entire life class 12 biology CBSE