
The curved surface of a right circular cylinder of height 14cm is $88c{m^2}$. Find the diameter of the base of a cylinder.
Answer
607.5k+ views
Hint: To solve this problem we have to use the formula of curved surface area of a cylinder, and we should also know the relation between radius and diameter which is basic but important.
Complete step-by-step answer:
Given the curved surface area of the circular cylinder =$88c{m^2}$.
Also given that height of (h) = 14cm
We know that curved surface area of circular cylinder = $2\pi rh$
Then we can say that
$ \Rightarrow 2\pi rh = 88$
$ \Rightarrow 2\pi r \times 14 = 88$ $[\because h = 14cm]$
$ \Rightarrow r = \dfrac{{88 \times 7}}{{28 \times 22}}$
$ \Rightarrow r = 1$
Therefore radius = 1cm
But here we have to find the diameter, we know that
d=2r
d=2(1) =2
Hence the diameter of the curved surface area of circular cylinder = 2cm
Note: In this problem they have given the value of the curved surface area of the circular cylinder where we have equated to its general formula, the formula includes the height which is already given in question. Now on substituting all required values we will get the radius of the circle but here we have to find the diameter. Since we know that diameter is twice the radius so now by using this relation we get the diameter of base of a cylinder which is our answer.
Complete step-by-step answer:
Given the curved surface area of the circular cylinder =$88c{m^2}$.
Also given that height of (h) = 14cm
We know that curved surface area of circular cylinder = $2\pi rh$
Then we can say that
$ \Rightarrow 2\pi rh = 88$
$ \Rightarrow 2\pi r \times 14 = 88$ $[\because h = 14cm]$
$ \Rightarrow r = \dfrac{{88 \times 7}}{{28 \times 22}}$
$ \Rightarrow r = 1$
Therefore radius = 1cm
But here we have to find the diameter, we know that
d=2r
d=2(1) =2
Hence the diameter of the curved surface area of circular cylinder = 2cm
Note: In this problem they have given the value of the curved surface area of the circular cylinder where we have equated to its general formula, the formula includes the height which is already given in question. Now on substituting all required values we will get the radius of the circle but here we have to find the diameter. Since we know that diameter is twice the radius so now by using this relation we get the diameter of base of a cylinder which is our answer.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


