
The cost of an air cooler has increased from Rs.$2250$ to $2500$. What is the percentage change?
Answer
570.3k+ views
Hint: We are given the initial cost price and the final cost price of the air cooler. First, find the difference in the cost by subtracting the initial cost from the final cost. This will tell us the increase in the cost price. Now use the formula-
$ \Rightarrow $ Percentage change=$\dfrac{{{\text{Increase in cost}}}}{{{\text{Initial cost}}}} \times 100$
Put the given values in the formula and solve to find the percentage change.
Complete step-by-step answer:
Given, the initial cost of the air cooler =Rs. $2250$
The final cost of the air cooler =Rs. $2500$
Now, we have to find the percentage change. For this we need to find the increase in the cost.
First, we will find the difference between the initial cost price and the final cost of the air cooler.
This difference tells us the increase in the cost of the air cooler.
So we can write-
$ \Rightarrow $ Increase in the cost=Final cost-initial cost=$2500 - 2250$
On solving, we get-
$ \Rightarrow $ Increase in the cost=Rs.$250$
Now to find the percentage change we will use the formula-
$ \Rightarrow $ Percentage change=$\dfrac{{{\text{Increase in cost}}}}{{{\text{Initial cost}}}} \times 100$
On putting the given values in the formula, we get-
$ \Rightarrow $ Percentage change=$\dfrac{{{\text{250}}}}{{{\text{2250}}}} \times 100$
On simplifying, we get-
$ \Rightarrow $ Percentage change=$\dfrac{{25}}{{225}} \times 10$
On dividing numerator and denominator, we get-
$ \Rightarrow $ Percentage change=$\dfrac{{\text{5}}}{{45}} \times 100$
On again dividing the numerator and denominator, we get-
$ \Rightarrow $ Percentage change=$\dfrac{1}{{\text{9}}} \times 100$
On again dividing the numerator and denominator, we get-
$ \Rightarrow $ Percentage change=$\dfrac{{100}}{9} = 11.11\% $
Hence the correct answer is $11.11\% $
Note: Here you can also directly use the formula-
Percentage change=$\dfrac{{{\text{Final cost - Initial cost}}}}{{{\text{Initial cost}}}} \times 100$
On putting the given values, we get-
Percentage change=$\dfrac{{2500 - 2250}}{{2250}} \times 100$
On solving, we get-
Percentage change=$\dfrac{{250}}{{2250}} \times 100$
On solving, we get-
Percentage change=$\dfrac{5}{{45}} \times 100 = \dfrac{1}{9} \times 100$
On solving, we get-
Percentage change=$11.11\% $
So we will get the same answer.
$ \Rightarrow $ Percentage change=$\dfrac{{{\text{Increase in cost}}}}{{{\text{Initial cost}}}} \times 100$
Put the given values in the formula and solve to find the percentage change.
Complete step-by-step answer:
Given, the initial cost of the air cooler =Rs. $2250$
The final cost of the air cooler =Rs. $2500$
Now, we have to find the percentage change. For this we need to find the increase in the cost.
First, we will find the difference between the initial cost price and the final cost of the air cooler.
This difference tells us the increase in the cost of the air cooler.
So we can write-
$ \Rightarrow $ Increase in the cost=Final cost-initial cost=$2500 - 2250$
On solving, we get-
$ \Rightarrow $ Increase in the cost=Rs.$250$
Now to find the percentage change we will use the formula-
$ \Rightarrow $ Percentage change=$\dfrac{{{\text{Increase in cost}}}}{{{\text{Initial cost}}}} \times 100$
On putting the given values in the formula, we get-
$ \Rightarrow $ Percentage change=$\dfrac{{{\text{250}}}}{{{\text{2250}}}} \times 100$
On simplifying, we get-
$ \Rightarrow $ Percentage change=$\dfrac{{25}}{{225}} \times 10$
On dividing numerator and denominator, we get-
$ \Rightarrow $ Percentage change=$\dfrac{{\text{5}}}{{45}} \times 100$
On again dividing the numerator and denominator, we get-
$ \Rightarrow $ Percentage change=$\dfrac{1}{{\text{9}}} \times 100$
On again dividing the numerator and denominator, we get-
$ \Rightarrow $ Percentage change=$\dfrac{{100}}{9} = 11.11\% $
Hence the correct answer is $11.11\% $
Note: Here you can also directly use the formula-
Percentage change=$\dfrac{{{\text{Final cost - Initial cost}}}}{{{\text{Initial cost}}}} \times 100$
On putting the given values, we get-
Percentage change=$\dfrac{{2500 - 2250}}{{2250}} \times 100$
On solving, we get-
Percentage change=$\dfrac{{250}}{{2250}} \times 100$
On solving, we get-
Percentage change=$\dfrac{5}{{45}} \times 100 = \dfrac{1}{9} \times 100$
On solving, we get-
Percentage change=$11.11\% $
So we will get the same answer.
Recently Updated Pages
A Utube is partially filled with water Oil which does class 11 physics CBSE

Write the Haworth structure of maltose class 12 chemistry CBSE

In the given figure the diagonal BD of a parallelogram class 10 maths CBSE

A rod of uniform thickness is placed along xaxis with class 11 physics CBSE

Write the relation between focal length and radius class 12 physics CBSE

Transform sentences with as soon as to sentences with class 10 english CBSE

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

What was the main occupation of early Aryans of rig class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


