
The cost of 2 books, 6 notebooks and 3 pens is Rs.40. The cost of 3 books, 4 notebooks and 2 pens is Rs.35. While the cost of 5 books, 7 notebooks and 4 pens is Rs.61. Using this information and matrix method, find the cost of 2 books, 3 notebooks and 2 pens separately.
Answer
517.5k+ views
Hint: This is a question about matrices. To solve the above equation, first we will derive the equations from given data containing variables, then we will convert them into matrix form. And solving that matrix we will get the values of variables. And from that we will derive the answer.
Complete step-by-step answer:
Let the price of a book be x.
The price of a notebook be y.
The price of a pen be z.
According to the question, the cost of 2 books, 6 notebooks and 3 pens is Rs.40.
Converting the above statement into an equation we get,
$ 2x + 6y + 3z = 40 $ ………………….. (1)
Again it is given that the cost of 3 books, 4 notebooks and 2 pens is Rs.35.
Converting the above statement into an equation we get,
$ 3x + 4y + 2z = 35 $ …………………. (2)
Again it is given that, the cost of 5 books, 7 notebooks and 4 pens is Rs.61.
Converting the above statement into an equation we get,
$ 5x + 7y + 4z = 61 $ ………………. (3)
Representing above 3 equation in matrix form we get,
$ \left( {\begin{array}{*{20}{c}}
{2x}&{6y}&{3z} \\
{3x}&{4y}&{2z} \\
{5x}&{7y}&{4z}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right) $
Taking x, y and z common from column 1, 2 and 3 respectively, we can write the above equation as,
$ \left( {\begin{array}{*{20}{c}}
2&6&3 \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right) $
Replacing $ {R_1} \to {R_1} - {R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
{ - 1}&2&1 \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5 \\
{35} \\
{61}
\end{array}} \right) $
Again replacing $ {R_1} \to ( - {R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{35} \\
{61}
\end{array}} \right) $
Again replacing $ {R_2} \to ({R_2} - 3{R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{61}
\end{array}} \right) $
Again replacing $ {R_3} \to ({R_3} - 5{R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
0&{17}&9
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{86}
\end{array}} \right) $
Replacing $ {R_2} \to \dfrac{1}{{10}}{R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&{17}&9
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
{86}
\end{array}} \right) $
Replacing $ {R_2} \to \dfrac{1}{{10}}{R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&0&{\dfrac{1}{2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
1
\end{array}} \right) $
Converting above equation from matrix form to normal form we get 3 equation such as,
$ x - 2y - z = - 5 $ ………. (4)
$ y + \dfrac{z}{2} = 5 $ ………… (5)
$ \dfrac{z}{2} = 1 $ ……………… (6)
From equation 6 we get, $ z = 2 $
Putting value of z in equation 5 we get,
$ y + \dfrac{2}{2} = 5 \Rightarrow y + 1 = 5 \Rightarrow y = 4 $
Putting values of y and z in equation 4 we get,
$ x - (2 \times 4) - 2 = - 5 \Rightarrow x = 5 $
As we have taken, the cost of a book x, the cost of a notebook y and the cost of a pen z.
Hence the cost of 2 books, $ 2x = 2 \times 5 = 10rs. $
The cost of 3 notebooks, $ 3y = 3 \times 4 = 12rs. $
The cost of 2 pens, $ 2z = 2 \times 2 = 4rs. $
$ \therefore $ The cost of 2 books, 3 notebooks and 2pens are Rs.10, Rs.12 and Rs.4 respectively.
Note: Matrix is a rectangular array of numbers, symbols or expressions arranged in rows and columns
Let A be a $ 3 \times 3 $ matrix, $ A = \left( {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right) $
You can solve the matrix equation by exchanging columns and rows.
You should remember all the properties and rules of the matrix.
You should practice more such questions.
Complete step-by-step answer:
Let the price of a book be x.
The price of a notebook be y.
The price of a pen be z.
According to the question, the cost of 2 books, 6 notebooks and 3 pens is Rs.40.
Converting the above statement into an equation we get,
$ 2x + 6y + 3z = 40 $ ………………….. (1)
Again it is given that the cost of 3 books, 4 notebooks and 2 pens is Rs.35.
Converting the above statement into an equation we get,
$ 3x + 4y + 2z = 35 $ …………………. (2)
Again it is given that, the cost of 5 books, 7 notebooks and 4 pens is Rs.61.
Converting the above statement into an equation we get,
$ 5x + 7y + 4z = 61 $ ………………. (3)
Representing above 3 equation in matrix form we get,
$ \left( {\begin{array}{*{20}{c}}
{2x}&{6y}&{3z} \\
{3x}&{4y}&{2z} \\
{5x}&{7y}&{4z}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right) $
Taking x, y and z common from column 1, 2 and 3 respectively, we can write the above equation as,
$ \left( {\begin{array}{*{20}{c}}
2&6&3 \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right) $
Replacing $ {R_1} \to {R_1} - {R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
{ - 1}&2&1 \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5 \\
{35} \\
{61}
\end{array}} \right) $
Again replacing $ {R_1} \to ( - {R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{35} \\
{61}
\end{array}} \right) $
Again replacing $ {R_2} \to ({R_2} - 3{R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{61}
\end{array}} \right) $
Again replacing $ {R_3} \to ({R_3} - 5{R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
0&{17}&9
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{86}
\end{array}} \right) $
Replacing $ {R_2} \to \dfrac{1}{{10}}{R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&{17}&9
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
{86}
\end{array}} \right) $
Replacing $ {R_2} \to \dfrac{1}{{10}}{R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&0&{\dfrac{1}{2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
1
\end{array}} \right) $
Converting above equation from matrix form to normal form we get 3 equation such as,
$ x - 2y - z = - 5 $ ………. (4)
$ y + \dfrac{z}{2} = 5 $ ………… (5)
$ \dfrac{z}{2} = 1 $ ……………… (6)
From equation 6 we get, $ z = 2 $
Putting value of z in equation 5 we get,
$ y + \dfrac{2}{2} = 5 \Rightarrow y + 1 = 5 \Rightarrow y = 4 $
Putting values of y and z in equation 4 we get,
$ x - (2 \times 4) - 2 = - 5 \Rightarrow x = 5 $
As we have taken, the cost of a book x, the cost of a notebook y and the cost of a pen z.
Hence the cost of 2 books, $ 2x = 2 \times 5 = 10rs. $
The cost of 3 notebooks, $ 3y = 3 \times 4 = 12rs. $
The cost of 2 pens, $ 2z = 2 \times 2 = 4rs. $
$ \therefore $ The cost of 2 books, 3 notebooks and 2pens are Rs.10, Rs.12 and Rs.4 respectively.
Note: Matrix is a rectangular array of numbers, symbols or expressions arranged in rows and columns
Let A be a $ 3 \times 3 $ matrix, $ A = \left( {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right) $
You can solve the matrix equation by exchanging columns and rows.
You should remember all the properties and rules of the matrix.
You should practice more such questions.
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The first general election of Lok Sabha was held in class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
