
The cost of 2 books, 6 notebooks and 3 pens is Rs.40. The cost of 3 books, 4 notebooks and 2 pens is Rs.35. While the cost of 5 books, 7 notebooks and 4 pens is Rs.61. Using this information and matrix method, find the cost of 2 books, 3 notebooks and 2 pens separately.
Answer
508.5k+ views
Hint: This is a question about matrices. To solve the above equation, first we will derive the equations from given data containing variables, then we will convert them into matrix form. And solving that matrix we will get the values of variables. And from that we will derive the answer.
Complete step-by-step answer:
Let the price of a book be x.
The price of a notebook be y.
The price of a pen be z.
According to the question, the cost of 2 books, 6 notebooks and 3 pens is Rs.40.
Converting the above statement into an equation we get,
$ 2x + 6y + 3z = 40 $ ………………….. (1)
Again it is given that the cost of 3 books, 4 notebooks and 2 pens is Rs.35.
Converting the above statement into an equation we get,
$ 3x + 4y + 2z = 35 $ …………………. (2)
Again it is given that, the cost of 5 books, 7 notebooks and 4 pens is Rs.61.
Converting the above statement into an equation we get,
$ 5x + 7y + 4z = 61 $ ………………. (3)
Representing above 3 equation in matrix form we get,
$ \left( {\begin{array}{*{20}{c}}
{2x}&{6y}&{3z} \\
{3x}&{4y}&{2z} \\
{5x}&{7y}&{4z}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right) $
Taking x, y and z common from column 1, 2 and 3 respectively, we can write the above equation as,
$ \left( {\begin{array}{*{20}{c}}
2&6&3 \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right) $
Replacing $ {R_1} \to {R_1} - {R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
{ - 1}&2&1 \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5 \\
{35} \\
{61}
\end{array}} \right) $
Again replacing $ {R_1} \to ( - {R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{35} \\
{61}
\end{array}} \right) $
Again replacing $ {R_2} \to ({R_2} - 3{R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{61}
\end{array}} \right) $
Again replacing $ {R_3} \to ({R_3} - 5{R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
0&{17}&9
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{86}
\end{array}} \right) $
Replacing $ {R_2} \to \dfrac{1}{{10}}{R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&{17}&9
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
{86}
\end{array}} \right) $
Replacing $ {R_2} \to \dfrac{1}{{10}}{R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&0&{\dfrac{1}{2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
1
\end{array}} \right) $
Converting above equation from matrix form to normal form we get 3 equation such as,
$ x - 2y - z = - 5 $ ………. (4)
$ y + \dfrac{z}{2} = 5 $ ………… (5)
$ \dfrac{z}{2} = 1 $ ……………… (6)
From equation 6 we get, $ z = 2 $
Putting value of z in equation 5 we get,
$ y + \dfrac{2}{2} = 5 \Rightarrow y + 1 = 5 \Rightarrow y = 4 $
Putting values of y and z in equation 4 we get,
$ x - (2 \times 4) - 2 = - 5 \Rightarrow x = 5 $
As we have taken, the cost of a book x, the cost of a notebook y and the cost of a pen z.
Hence the cost of 2 books, $ 2x = 2 \times 5 = 10rs. $
The cost of 3 notebooks, $ 3y = 3 \times 4 = 12rs. $
The cost of 2 pens, $ 2z = 2 \times 2 = 4rs. $
$ \therefore $ The cost of 2 books, 3 notebooks and 2pens are Rs.10, Rs.12 and Rs.4 respectively.
Note: Matrix is a rectangular array of numbers, symbols or expressions arranged in rows and columns
Let A be a $ 3 \times 3 $ matrix, $ A = \left( {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right) $
You can solve the matrix equation by exchanging columns and rows.
You should remember all the properties and rules of the matrix.
You should practice more such questions.
Complete step-by-step answer:
Let the price of a book be x.
The price of a notebook be y.
The price of a pen be z.
According to the question, the cost of 2 books, 6 notebooks and 3 pens is Rs.40.
Converting the above statement into an equation we get,
$ 2x + 6y + 3z = 40 $ ………………….. (1)
Again it is given that the cost of 3 books, 4 notebooks and 2 pens is Rs.35.
Converting the above statement into an equation we get,
$ 3x + 4y + 2z = 35 $ …………………. (2)
Again it is given that, the cost of 5 books, 7 notebooks and 4 pens is Rs.61.
Converting the above statement into an equation we get,
$ 5x + 7y + 4z = 61 $ ………………. (3)
Representing above 3 equation in matrix form we get,
$ \left( {\begin{array}{*{20}{c}}
{2x}&{6y}&{3z} \\
{3x}&{4y}&{2z} \\
{5x}&{7y}&{4z}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right) $
Taking x, y and z common from column 1, 2 and 3 respectively, we can write the above equation as,
$ \left( {\begin{array}{*{20}{c}}
2&6&3 \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{40} \\
{35} \\
{61}
\end{array}} \right) $
Replacing $ {R_1} \to {R_1} - {R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
{ - 1}&2&1 \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5 \\
{35} \\
{61}
\end{array}} \right) $
Again replacing $ {R_1} \to ( - {R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
3&4&2 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{35} \\
{61}
\end{array}} \right) $
Again replacing $ {R_2} \to ({R_2} - 3{R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
5&7&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{61}
\end{array}} \right) $
Again replacing $ {R_3} \to ({R_3} - 5{R_1}) $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&{10}&5 \\
0&{17}&9
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
{50} \\
{86}
\end{array}} \right) $
Replacing $ {R_2} \to \dfrac{1}{{10}}{R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&{17}&9
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
{86}
\end{array}} \right) $
Replacing $ {R_2} \to \dfrac{1}{{10}}{R_2} $ in the first term of the left hand side and right hand side of the equation we get,
$ \left( {\begin{array}{*{20}{c}}
1&{ - 2}&{ - 1} \\
0&1&{\dfrac{1}{2}} \\
0&0&{\dfrac{1}{2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 5} \\
5 \\
1
\end{array}} \right) $
Converting above equation from matrix form to normal form we get 3 equation such as,
$ x - 2y - z = - 5 $ ………. (4)
$ y + \dfrac{z}{2} = 5 $ ………… (5)
$ \dfrac{z}{2} = 1 $ ……………… (6)
From equation 6 we get, $ z = 2 $
Putting value of z in equation 5 we get,
$ y + \dfrac{2}{2} = 5 \Rightarrow y + 1 = 5 \Rightarrow y = 4 $
Putting values of y and z in equation 4 we get,
$ x - (2 \times 4) - 2 = - 5 \Rightarrow x = 5 $
As we have taken, the cost of a book x, the cost of a notebook y and the cost of a pen z.
Hence the cost of 2 books, $ 2x = 2 \times 5 = 10rs. $
The cost of 3 notebooks, $ 3y = 3 \times 4 = 12rs. $
The cost of 2 pens, $ 2z = 2 \times 2 = 4rs. $
$ \therefore $ The cost of 2 books, 3 notebooks and 2pens are Rs.10, Rs.12 and Rs.4 respectively.
Note: Matrix is a rectangular array of numbers, symbols or expressions arranged in rows and columns
Let A be a $ 3 \times 3 $ matrix, $ A = \left( {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right) $
You can solve the matrix equation by exchanging columns and rows.
You should remember all the properties and rules of the matrix.
You should practice more such questions.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
