
The coordinates of the point of reflection the origin $(0,0)$in the line $4x - 2y - 5 = 0$
A. $(1,2)$
B. $(2, - 1)$
C. $\left( {\dfrac{4}{5},\dfrac{2}{5}} \right)$
D. $(2,5)$
Answer
572.7k+ views
Hint: Make use of the concept of image of a point with respect to the line mirror
Let the image of $A(x,y)$with respect to the line mirror.
Then it is given by
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
Also, Let the foot of perpendicular form the point $A({x_1},{y_1})$which is given by
$\dfrac{{{x_3} - {x_1}}}{a} = \dfrac{{{y_3} - {y_1}}}{b} = \dfrac{{(a{x_1} + b{y_1} + c)}}{{{a^2} + {b^2}}}$
So, using the above technique, reflection points will be fixed out.
Complete step by step solution:
Let $Q({x_1},{y_1})$be the reflection of $(0,0)$with respect to the line $4x - 2y - 5 = 0$
$\left[
a = 4 \\
b = - 2 \\
c = - 5 \\
\right]$ And ${x_2} = 0,{y_2} = 0$
Then, using the formula
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
We will substitute the value of $a,b,c,{x_2}and{y_2}$,we have
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ {4(0) + ( - 2)(0) - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ { - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{{y_1}}}{{ - 2}} = \dfrac{{10}}{{16 + 4}} = \dfrac{{10}}{{20}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{1}{2},\dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
We will do cross multiply the numbers,
$2{x_1} = 4,2{y_1} = - 2$
${x_1} = \dfrac{4}{2},{y_1} = \dfrac{{ - 2}}{2}$
$ \Rightarrow {x_1} = 2$
$ \Rightarrow {y_1} = - 1$
Therefore, the required reflection point is $\left( {2, - 1} \right)$.
Hence, the correct answer is B.
Note: Simply by putting the required value in the formula illustrated in the hint section, we will get the reflection of any point about any line.
Let the image of $A(x,y)$with respect to the line mirror.
Then it is given by
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
Also, Let the foot of perpendicular form the point $A({x_1},{y_1})$which is given by
$\dfrac{{{x_3} - {x_1}}}{a} = \dfrac{{{y_3} - {y_1}}}{b} = \dfrac{{(a{x_1} + b{y_1} + c)}}{{{a^2} + {b^2}}}$
So, using the above technique, reflection points will be fixed out.
Complete step by step solution:
Let $Q({x_1},{y_1})$be the reflection of $(0,0)$with respect to the line $4x - 2y - 5 = 0$
$\left[
a = 4 \\
b = - 2 \\
c = - 5 \\
\right]$ And ${x_2} = 0,{y_2} = 0$
Then, using the formula
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
We will substitute the value of $a,b,c,{x_2}and{y_2}$,we have
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ {4(0) + ( - 2)(0) - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ { - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{{y_1}}}{{ - 2}} = \dfrac{{10}}{{16 + 4}} = \dfrac{{10}}{{20}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{1}{2},\dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
We will do cross multiply the numbers,
$2{x_1} = 4,2{y_1} = - 2$
${x_1} = \dfrac{4}{2},{y_1} = \dfrac{{ - 2}}{2}$
$ \Rightarrow {x_1} = 2$
$ \Rightarrow {y_1} = - 1$
Therefore, the required reflection point is $\left( {2, - 1} \right)$.
Hence, the correct answer is B.
Note: Simply by putting the required value in the formula illustrated in the hint section, we will get the reflection of any point about any line.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

