
The coordinates of the point of reflection the origin $(0,0)$in the line $4x - 2y - 5 = 0$
A. $(1,2)$
B. $(2, - 1)$
C. $\left( {\dfrac{4}{5},\dfrac{2}{5}} \right)$
D. $(2,5)$
Answer
588.9k+ views
Hint: Make use of the concept of image of a point with respect to the line mirror
Let the image of $A(x,y)$with respect to the line mirror.
Then it is given by
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
Also, Let the foot of perpendicular form the point $A({x_1},{y_1})$which is given by
$\dfrac{{{x_3} - {x_1}}}{a} = \dfrac{{{y_3} - {y_1}}}{b} = \dfrac{{(a{x_1} + b{y_1} + c)}}{{{a^2} + {b^2}}}$
So, using the above technique, reflection points will be fixed out.
Complete step by step solution:
Let $Q({x_1},{y_1})$be the reflection of $(0,0)$with respect to the line $4x - 2y - 5 = 0$
$\left[
a = 4 \\
b = - 2 \\
c = - 5 \\
\right]$ And ${x_2} = 0,{y_2} = 0$
Then, using the formula
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
We will substitute the value of $a,b,c,{x_2}and{y_2}$,we have
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ {4(0) + ( - 2)(0) - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ { - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{{y_1}}}{{ - 2}} = \dfrac{{10}}{{16 + 4}} = \dfrac{{10}}{{20}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{1}{2},\dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
We will do cross multiply the numbers,
$2{x_1} = 4,2{y_1} = - 2$
${x_1} = \dfrac{4}{2},{y_1} = \dfrac{{ - 2}}{2}$
$ \Rightarrow {x_1} = 2$
$ \Rightarrow {y_1} = - 1$
Therefore, the required reflection point is $\left( {2, - 1} \right)$.
Hence, the correct answer is B.
Note: Simply by putting the required value in the formula illustrated in the hint section, we will get the reflection of any point about any line.
Let the image of $A(x,y)$with respect to the line mirror.
Then it is given by
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
Also, Let the foot of perpendicular form the point $A({x_1},{y_1})$which is given by
$\dfrac{{{x_3} - {x_1}}}{a} = \dfrac{{{y_3} - {y_1}}}{b} = \dfrac{{(a{x_1} + b{y_1} + c)}}{{{a^2} + {b^2}}}$
So, using the above technique, reflection points will be fixed out.
Complete step by step solution:
Let $Q({x_1},{y_1})$be the reflection of $(0,0)$with respect to the line $4x - 2y - 5 = 0$
$\left[
a = 4 \\
b = - 2 \\
c = - 5 \\
\right]$ And ${x_2} = 0,{y_2} = 0$
Then, using the formula
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
We will substitute the value of $a,b,c,{x_2}and{y_2}$,we have
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ {4(0) + ( - 2)(0) - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ { - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{{y_1}}}{{ - 2}} = \dfrac{{10}}{{16 + 4}} = \dfrac{{10}}{{20}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{1}{2},\dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
We will do cross multiply the numbers,
$2{x_1} = 4,2{y_1} = - 2$
${x_1} = \dfrac{4}{2},{y_1} = \dfrac{{ - 2}}{2}$
$ \Rightarrow {x_1} = 2$
$ \Rightarrow {y_1} = - 1$
Therefore, the required reflection point is $\left( {2, - 1} \right)$.
Hence, the correct answer is B.
Note: Simply by putting the required value in the formula illustrated in the hint section, we will get the reflection of any point about any line.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

