
The coordinates of the point of reflection the origin $(0,0)$in the line $4x - 2y - 5 = 0$
A. $(1,2)$
B. $(2, - 1)$
C. $\left( {\dfrac{4}{5},\dfrac{2}{5}} \right)$
D. $(2,5)$
Answer
580.8k+ views
Hint: Make use of the concept of image of a point with respect to the line mirror
Let the image of $A(x,y)$with respect to the line mirror.
Then it is given by
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
Also, Let the foot of perpendicular form the point $A({x_1},{y_1})$which is given by
$\dfrac{{{x_3} - {x_1}}}{a} = \dfrac{{{y_3} - {y_1}}}{b} = \dfrac{{(a{x_1} + b{y_1} + c)}}{{{a^2} + {b^2}}}$
So, using the above technique, reflection points will be fixed out.
Complete step by step solution:
Let $Q({x_1},{y_1})$be the reflection of $(0,0)$with respect to the line $4x - 2y - 5 = 0$
$\left[
a = 4 \\
b = - 2 \\
c = - 5 \\
\right]$ And ${x_2} = 0,{y_2} = 0$
Then, using the formula
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
We will substitute the value of $a,b,c,{x_2}and{y_2}$,we have
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ {4(0) + ( - 2)(0) - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ { - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{{y_1}}}{{ - 2}} = \dfrac{{10}}{{16 + 4}} = \dfrac{{10}}{{20}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{1}{2},\dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
We will do cross multiply the numbers,
$2{x_1} = 4,2{y_1} = - 2$
${x_1} = \dfrac{4}{2},{y_1} = \dfrac{{ - 2}}{2}$
$ \Rightarrow {x_1} = 2$
$ \Rightarrow {y_1} = - 1$
Therefore, the required reflection point is $\left( {2, - 1} \right)$.
Hence, the correct answer is B.
Note: Simply by putting the required value in the formula illustrated in the hint section, we will get the reflection of any point about any line.
Let the image of $A(x,y)$with respect to the line mirror.
Then it is given by
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
Also, Let the foot of perpendicular form the point $A({x_1},{y_1})$which is given by
$\dfrac{{{x_3} - {x_1}}}{a} = \dfrac{{{y_3} - {y_1}}}{b} = \dfrac{{(a{x_1} + b{y_1} + c)}}{{{a^2} + {b^2}}}$
So, using the above technique, reflection points will be fixed out.
Complete step by step solution:
Let $Q({x_1},{y_1})$be the reflection of $(0,0)$with respect to the line $4x - 2y - 5 = 0$
$\left[
a = 4 \\
b = - 2 \\
c = - 5 \\
\right]$ And ${x_2} = 0,{y_2} = 0$
Then, using the formula
$\dfrac{{{x_2} - {x_1}}}{a} = \dfrac{{{y_2} - {y_1}}}{b} = \dfrac{{ - 2(a{x_1} + b{y_1} + c)}}{{({a^2} + {b^2})}}$
We will substitute the value of $a,b,c,{x_2}and{y_2}$,we have
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ {4(0) + ( - 2)(0) - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$\dfrac{{{x_1} - 0}}{4} = \dfrac{{{y_1} - 0}}{{ - 2}} = \dfrac{{ - 2\left[ { - 5} \right]}}{{{{(4)}^2} + {{( - 2)}^2}}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{{y_1}}}{{ - 2}} = \dfrac{{10}}{{16 + 4}} = \dfrac{{10}}{{20}}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
$ \Rightarrow \dfrac{{{x_1}}}{4} = \dfrac{1}{2},\dfrac{{ - {y_1}}}{2} = \dfrac{1}{2}$
We will do cross multiply the numbers,
$2{x_1} = 4,2{y_1} = - 2$
${x_1} = \dfrac{4}{2},{y_1} = \dfrac{{ - 2}}{2}$
$ \Rightarrow {x_1} = 2$
$ \Rightarrow {y_1} = - 1$
Therefore, the required reflection point is $\left( {2, - 1} \right)$.
Hence, the correct answer is B.
Note: Simply by putting the required value in the formula illustrated in the hint section, we will get the reflection of any point about any line.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

What are luminous and Non luminous objects class 10 physics CBSE

