
The convex surface of a thin concavo– convex lens of glass of refractive index $ 1.5 $ has a radius of curvature $ 20cm $ . The concave surface has a radius of curvature of $ 60cm $ . The convex side is coated with silver and placed at a horizontal surface as shown in the figure.
(a) Where a pin should be placed on the optical axis such that its image is formed at the same place?
(b) If the concave part is filled with water of refractive index $ \dfrac{4}{3} $ , find the distance through which the pin should be moved, so that the image of the pin again coincides with the pin?
Answer
513k+ views
Hint: A lens whose one side is concave and the other side is convex is called concavo convex lens. There are three processes which take place in this setup. Firstly refraction takes place, then reflection and then it again refracts.
Complete step by step answer:
(a)
Let the pin be placed at $ x $ distance from the lens.
Let us assume that the refractive index of air is $ {\mu _1} $ and that of glass is $ {\mu _2} $
$ {\mu _1} = 1 \\
{\mu _2} = 1.5 \\ $
Let us assume that the radius of convex curvature is $ {R_1} $ and the radius of concave curvature is $ {R_2} $
$ {R_1} = 20cm \\
{R_2} = 60cm \\ $
When refraction takes place,
$ \dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R} $
Substituting the values according to sign convention ,we get:
$ \dfrac{{1.5}}{v} - \dfrac{1}{{ - x}} = \dfrac{{1.5 - 1}}{{ - 60}} \\
\dfrac{{1.5}}{v} = \dfrac{{0.5}}{{ - 60}} + \dfrac{1}{{ - x}} \\
\dfrac{{1.5}}{v} = \dfrac{{ - 0.5x - 60}}{{60x}} \\
\dfrac{{1.5}}{v} = - 0.5\left( {\dfrac{{x + 120}}{{60x}}} \right) \\
v = - \dfrac{{15}}{5}\left( {\dfrac{{60x}}{{x + 120}}} \right) \\
v = \dfrac{{ - 180x}}{{120 + x}} \\ $
Hence, the position of the image formed after the first refraction is $ \dfrac{{ - 180x}}{{120 + x}} $ .
Now, this position acts as an object for the next reflection.
The formula to find focal length of concave lens is :
$ f = - \dfrac{R}{2} = - \dfrac{{20}}{2} = - 10 $
We also know that the mirror formula is
$ \dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f} \\
\dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u} \\ $
Substituting the values we will get
$ \dfrac{1}{v} = - \dfrac{1}{{10}} + \dfrac{1}{{\dfrac{{180x}}{{120 + x}}}} \\
\dfrac{1}{v} = - \dfrac{1}{{10}} + \dfrac{{120 + x}}{{180x}} \\
\dfrac{1}{v} = \dfrac{{ - 18x + 120 + x}}{{180x}} \\
\dfrac{1}{v} = \dfrac{{ - 17x + 120}}{{180x}} \\
v = \dfrac{{180x}}{{120 - 17x}} \\ $
Now, this position acts as an object for the next refraction. So we will again use the refraction formula.
The image position should be the same as that of the position of the pin. Hence, $ v = - x $ .
$ \dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R} $
Substituting the values we will get,
$ \dfrac{1}{{ - x}} - \dfrac{{1.5}}{{180x}}\left( {120 - 17x} \right) = \dfrac{{ - 0.5}}{{60}} \\
\dfrac{1}{{ - x}} - \dfrac{{1.5}}{{180x}}\left( {120 - 17x} \right) = \dfrac{{ - 0.5}}{{60}} \\
\dfrac{1}{1} + \dfrac{{120 - 17x}}{{120}} = \dfrac{x}{{120}} \\
1 = \dfrac{{ - 120 + 17x + x}}{{120}} \\
120 = - 120 + 18x \\
240 = 18x \\
x = \dfrac{{240}}{{18}} \\
x = 15 \\$
Hence, the pin should be placed on 15cm so that its image is formed at the same place
(b)
Let us consider the focal length of water as $ {f_w} $ and the focal length of the whole combination as $ F' $ . The focal length for refraction is $ {f_g} $ and reflection is $ {f_m} $ .
Hence, $ F' $ can be calculated as:
$ \dfrac{1}{{F'}} = \dfrac{1}{{{f_w}}} + \dfrac{1}{{{f_g}}} + \dfrac{1}{{{f_m}}} + \dfrac{1}{{{f_g}}} + \dfrac{1}{{{f_w}}} \\
\dfrac{1}{{F'}} = \dfrac{2}{{{f_w}}} + \dfrac{2}{{{f_g}}} + \dfrac{1}{{{f_m}}} \\ $
Now, to calculate the value of $ {f_w} $ , We use this formula:
$ \dfrac{1}{{{f_w}}} = \left( {\mu _w^a - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right) \\
\dfrac{1}{{{f_w}}} = \left( {\dfrac{4}{3} - 1} \right)\left( {\dfrac{1}{{60}}} \right) \\
\dfrac{1}{{{f_w}}} = \dfrac{1}{{180}} \\
{f_w} = 180cm \\ $
We also know that $ {f_g} = 60cm $ and $ {f_m} = 10cm $
Hence after substituting all the values we will get,
$ \dfrac{1}{{F'}} = \dfrac{2}{{180}} + \dfrac{2}{{60}} + \dfrac{1}{{10}} \\
\dfrac{1}{{F'}} = \dfrac{{2 + 6 + 18}}{{180}} \\
\dfrac{1}{{F'}} = \dfrac{{26}}{{180}} \\
F' = \dfrac{{90}}{{13}} \\ $
The formula to calculate u is
$ u' = 2F' \\
u' = \dfrac{{2 \times 90}}{{13}} = \dfrac{{180}}{{13}}cm \\ $
Now to calculate the displacement of the pin from the original position, we subtract both the values
$ = u - u' \\
= 15 - \dfrac{{180}}{{13}} \\
= \dfrac{{15}}{{13}} = 1.14cm \\ $
Hence, the image should be displaced by 1.14cm so that the image of the pin again coincides with the pin.
Note:
In a concavo convex lens, the degree of curvature of the convex face is greater than that of the concave face. The lenses can be positive or negative. It depends upon the curvatures of two surfaces.
Complete step by step answer:
(a)
Let the pin be placed at $ x $ distance from the lens.
Let us assume that the refractive index of air is $ {\mu _1} $ and that of glass is $ {\mu _2} $
$ {\mu _1} = 1 \\
{\mu _2} = 1.5 \\ $
Let us assume that the radius of convex curvature is $ {R_1} $ and the radius of concave curvature is $ {R_2} $
$ {R_1} = 20cm \\
{R_2} = 60cm \\ $
When refraction takes place,
$ \dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R} $
Substituting the values according to sign convention ,we get:
$ \dfrac{{1.5}}{v} - \dfrac{1}{{ - x}} = \dfrac{{1.5 - 1}}{{ - 60}} \\
\dfrac{{1.5}}{v} = \dfrac{{0.5}}{{ - 60}} + \dfrac{1}{{ - x}} \\
\dfrac{{1.5}}{v} = \dfrac{{ - 0.5x - 60}}{{60x}} \\
\dfrac{{1.5}}{v} = - 0.5\left( {\dfrac{{x + 120}}{{60x}}} \right) \\
v = - \dfrac{{15}}{5}\left( {\dfrac{{60x}}{{x + 120}}} \right) \\
v = \dfrac{{ - 180x}}{{120 + x}} \\ $
Hence, the position of the image formed after the first refraction is $ \dfrac{{ - 180x}}{{120 + x}} $ .
Now, this position acts as an object for the next reflection.
The formula to find focal length of concave lens is :
$ f = - \dfrac{R}{2} = - \dfrac{{20}}{2} = - 10 $
We also know that the mirror formula is
$ \dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f} \\
\dfrac{1}{v} = \dfrac{1}{f} - \dfrac{1}{u} \\ $
Substituting the values we will get
$ \dfrac{1}{v} = - \dfrac{1}{{10}} + \dfrac{1}{{\dfrac{{180x}}{{120 + x}}}} \\
\dfrac{1}{v} = - \dfrac{1}{{10}} + \dfrac{{120 + x}}{{180x}} \\
\dfrac{1}{v} = \dfrac{{ - 18x + 120 + x}}{{180x}} \\
\dfrac{1}{v} = \dfrac{{ - 17x + 120}}{{180x}} \\
v = \dfrac{{180x}}{{120 - 17x}} \\ $
Now, this position acts as an object for the next refraction. So we will again use the refraction formula.
The image position should be the same as that of the position of the pin. Hence, $ v = - x $ .
$ \dfrac{{{\mu _2}}}{v} - \dfrac{{{\mu _1}}}{u} = \dfrac{{{\mu _2} - {\mu _1}}}{R} $
Substituting the values we will get,
$ \dfrac{1}{{ - x}} - \dfrac{{1.5}}{{180x}}\left( {120 - 17x} \right) = \dfrac{{ - 0.5}}{{60}} \\
\dfrac{1}{{ - x}} - \dfrac{{1.5}}{{180x}}\left( {120 - 17x} \right) = \dfrac{{ - 0.5}}{{60}} \\
\dfrac{1}{1} + \dfrac{{120 - 17x}}{{120}} = \dfrac{x}{{120}} \\
1 = \dfrac{{ - 120 + 17x + x}}{{120}} \\
120 = - 120 + 18x \\
240 = 18x \\
x = \dfrac{{240}}{{18}} \\
x = 15 \\$
Hence, the pin should be placed on 15cm so that its image is formed at the same place
(b)
Let us consider the focal length of water as $ {f_w} $ and the focal length of the whole combination as $ F' $ . The focal length for refraction is $ {f_g} $ and reflection is $ {f_m} $ .
Hence, $ F' $ can be calculated as:
$ \dfrac{1}{{F'}} = \dfrac{1}{{{f_w}}} + \dfrac{1}{{{f_g}}} + \dfrac{1}{{{f_m}}} + \dfrac{1}{{{f_g}}} + \dfrac{1}{{{f_w}}} \\
\dfrac{1}{{F'}} = \dfrac{2}{{{f_w}}} + \dfrac{2}{{{f_g}}} + \dfrac{1}{{{f_m}}} \\ $
Now, to calculate the value of $ {f_w} $ , We use this formula:
$ \dfrac{1}{{{f_w}}} = \left( {\mu _w^a - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right) \\
\dfrac{1}{{{f_w}}} = \left( {\dfrac{4}{3} - 1} \right)\left( {\dfrac{1}{{60}}} \right) \\
\dfrac{1}{{{f_w}}} = \dfrac{1}{{180}} \\
{f_w} = 180cm \\ $
We also know that $ {f_g} = 60cm $ and $ {f_m} = 10cm $
Hence after substituting all the values we will get,
$ \dfrac{1}{{F'}} = \dfrac{2}{{180}} + \dfrac{2}{{60}} + \dfrac{1}{{10}} \\
\dfrac{1}{{F'}} = \dfrac{{2 + 6 + 18}}{{180}} \\
\dfrac{1}{{F'}} = \dfrac{{26}}{{180}} \\
F' = \dfrac{{90}}{{13}} \\ $
The formula to calculate u is
$ u' = 2F' \\
u' = \dfrac{{2 \times 90}}{{13}} = \dfrac{{180}}{{13}}cm \\ $
Now to calculate the displacement of the pin from the original position, we subtract both the values
$ = u - u' \\
= 15 - \dfrac{{180}}{{13}} \\
= \dfrac{{15}}{{13}} = 1.14cm \\ $
Hence, the image should be displaced by 1.14cm so that the image of the pin again coincides with the pin.
Note:
In a concavo convex lens, the degree of curvature of the convex face is greater than that of the concave face. The lenses can be positive or negative. It depends upon the curvatures of two surfaces.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

