
The contrapositive of $p \to \left( {\neg q \to \neg r} \right)$
A.$\left( {\neg q \wedge r} \right) \to \neg p$
B.$\left( {q \wedge \neg r} \right) \to \neg p$
C.$p \to \left( {\neg r \vee q} \right)$
D.$p \wedge \left( {q \vee r} \right)$
Answer
567.6k+ views
Hint: If the conditional statement is \[a \to b\], then the contrapositive statement is \[\neg b \to \neg a\]. Write the contrapositive statement for the given conditional statement. Then solve the bracket using the condition $a \to b \equiv \neg a \vee b$. To get the final answer, use to De Morgan’s law, \[\neg \left( {p \wedge q} \right) = \neg p \vee \neg q\]
Complete step-by-step answer:
We know that if the conditional statement is \[a \to b\], then the contrapositive statement is \[\neg b \to \neg a\]
From the given conditional statement, $p \to \left( {\neg q \to \neg r} \right)$, we can write the contrapositive statement as,
$\neg \left( {\neg q \to \neg r} \right) \to \neg p$.
Now, we will solve the bracket.
As we know, $a \to b \equiv \neg a \vee b$
So, the contrapositive expression is equivalent to $\neg \left( {\neg q \to \neg r} \right) \to \neg p \equiv \neg \left( {q \vee \neg r} \right) \to \neg p$
Now, we will apply De Morgan’s law, which states that, \[\neg \left( {a \wedge b} \right) = \neg a \vee \neg b\]
Therefore, for $\neg \left( {q \vee \neg r} \right) \to \neg p$, we get,
$\neg \left( {q \vee \neg r} \right) \to \neg p \equiv \left( {\neg q \wedge r} \right) \to \neg p$
Hence, option A is correct.
Note: If the conditional statement is \[p \to q\], then the converse is \[q \to p\]. If the conditional statement is \[p \to q\], then the inverse is \[\neg p \to \neg q\] and if the conditional statement is \[p \to q\], then the contrapositive statement is \[\neg q \to \neg p\]. According to De Morgan’s law, \[\neg \left( {p \wedge q} \right) = \neg p \vee \neg q\]
Complete step-by-step answer:
We know that if the conditional statement is \[a \to b\], then the contrapositive statement is \[\neg b \to \neg a\]
From the given conditional statement, $p \to \left( {\neg q \to \neg r} \right)$, we can write the contrapositive statement as,
$\neg \left( {\neg q \to \neg r} \right) \to \neg p$.
Now, we will solve the bracket.
As we know, $a \to b \equiv \neg a \vee b$
So, the contrapositive expression is equivalent to $\neg \left( {\neg q \to \neg r} \right) \to \neg p \equiv \neg \left( {q \vee \neg r} \right) \to \neg p$
Now, we will apply De Morgan’s law, which states that, \[\neg \left( {a \wedge b} \right) = \neg a \vee \neg b\]
Therefore, for $\neg \left( {q \vee \neg r} \right) \to \neg p$, we get,
$\neg \left( {q \vee \neg r} \right) \to \neg p \equiv \left( {\neg q \wedge r} \right) \to \neg p$
Hence, option A is correct.
Note: If the conditional statement is \[p \to q\], then the converse is \[q \to p\]. If the conditional statement is \[p \to q\], then the inverse is \[\neg p \to \neg q\] and if the conditional statement is \[p \to q\], then the contrapositive statement is \[\neg q \to \neg p\]. According to De Morgan’s law, \[\neg \left( {p \wedge q} \right) = \neg p \vee \neg q\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

How is democracy better than other forms of government class 12 social science CBSE

