
The condition for \[y = a{x^4} + b{x^3} + c{x^2} + dx + e\] to have points of inflection is
(a) \[{b^2} - 4ac > 0\]
(b) \[3{b^2} - 8ac = 0\]
(c) \[3{b^2} - 8ac > 0\]
(d) \[3{b^2} - 8ac < 0\]
Answer
564k+ views
Hint:
Here, we need to find the condition for which the given equation has points of inflection. A function \[f\left( x \right)\] has points of inflection if its second derivative is equal to zero, that is \[f''\left( x \right) = 0\]. First, we will find the second derivative of the given function. Then, we will solve the resulting quadratic function using the quadratic formula and use the expression with the determinant to find the required condition.
Formula Used:
1) The derivative of a function of the form \[af\left( x \right) + b\] can be written as \[\dfrac{{d\left( {af\left( x \right) + b} \right)}}{{dx}} = a\dfrac{{d\left( {f\left( x \right)} \right)}}{x} + b\].
2) The derivative of the function of the form \[f\left( x \right) = {x^n}\] is written as \[f'\left( x \right) = n{x^{n - 1}}\].
3)The derivative of a constant is always 0.
4) The quadratic formula states that the roots of a quadratic equation \[A{x^2} + Bx + C = 0\] are given by \[x = \dfrac{{ - B \pm \sqrt D }}{{2A}}\], where \[D\] is the discriminant given by the formula \[D = {B^2} - 4AC\].
Complete step by step solution:
A function \[f\left( x \right)\] has points of inflection if its second derivative is equal to zero, that is \[f''\left( x \right) = 0\].
First, we will find the first derivative of the given function.
Differentiating both sides of the equation with respect to \[x\], we get
\[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4} + b{x^3} + c{x^2} + dx + e} \right)}}{{dx}}\]
The right hand side is the derivative of a sum of functions.
Therefore, we can simplify the equation to get
\[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}}\]
Therefore, the equation becomes
We know that the derivative of a function of the form \[af\left( x \right) + b\] can be written as \[\dfrac{{d\left( {af\left( x \right) + b} \right)}}{{dx}} = a\dfrac{{d\left( {f\left( x \right)} \right)}}{x} + b\].
Therefore, we get
\[ \Rightarrow \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}}\]
\[ \Rightarrow \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} = b\dfrac{{d\left( {{x^3}} \right)}}{{dx}}\]
\[ \Rightarrow \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} = c\dfrac{{d\left( {{x^2}} \right)}}{{dx}}\]
\[ \Rightarrow \dfrac{{d\left( {dx} \right)}}{{dx}} = d\dfrac{{d\left( x \right)}}{{dx}}\]
\[ \Rightarrow \dfrac{{d\left( e \right)}}{{dx}} = e\dfrac{{d\left( 1 \right)}}{{dx}}\]
Substituting \[\dfrac{{d\left( {a{x^4}} \right)}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}}\], \[\dfrac{{d\left( {b{x^3}} \right)}}{{dx}} = b\dfrac{{d\left( {{x^3}} \right)}}{{dx}}\], \[\dfrac{{d\left( {c{x^2}} \right)}}{{dx}} = c\dfrac{{d\left( {{x^2}} \right)}}{{dx}}\], \[\dfrac{{d\left( {dx} \right)}}{{dx}} = d\dfrac{{d\left( x \right)}}{{dx}}\], and \[\dfrac{{d\left( e \right)}}{{dx}} = e\dfrac{{d\left( 1 \right)}}{{dx}}\] in the equation \[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}} + b\dfrac{{d\left( {{x^3}} \right)}}{{dx}} + c\dfrac{{d\left( {{x^2}} \right)}}{{dx}} + d\dfrac{{d\left( x \right)}}{{dx}} + e\dfrac{{d\left( 1 \right)}}{{dx}}\]
The derivative of the function of the form \[f\left( x \right) = {x^n}\] is written as \[f'\left( x \right) = n{x^{n - 1}}\].
The derivative of a constant is always 0.
Therefore, the equation becomes
$ \Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( {1 \times {x^0}} \right) + e\left( 0 \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( {1 \times 1} \right) + 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( 1 \right) \\ $
Multiplying the terms of the expression, we get the first derivative as
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 4a{x^3} + 3b{x^2} + 2cx + d\]
Now, we will differentiate the first derivative to find the second derivative.
Differentiating both sides of the equation with respect to \[x\], we get
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3} + 3b{x^2} + 2cx + d} \right)}}{{dx}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {3b{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {2cx} \right)}}{{dx}} + \dfrac{{d\left( d \right)}}{{dx}} \\ $
Simplifying the expression, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 4a\dfrac{{d\left( {{x^3}} \right)}}{{dx}} + 3b\dfrac{{d\left( {{x^2}} \right)}}{{dx}} + 2c\dfrac{{d\left( x \right)}}{{dx}} + d\dfrac{{d\left( 1 \right)}}{{dx}}\]
Therefore, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 4a\left( {3{x^2}} \right) + 3b\left( {2x} \right) + 2c\left( 1 \right) + d\left( 0 \right)\]
Multiplying the terms of the expression, we get the first derivative as
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 12a{x^2} + 6bx + 2c\]
This is the second derivative of \[y = a{x^4} + b{x^3} + c{x^2} + dx + e\].
Now, a function \[f\left( x \right)\] has points of inflection if its second derivative is equal to zero, that is \[f''\left( x \right) = 0\].
Therefore, the condition such that \[y = a{x^4} + b{x^3} + c{x^2} + dx + e\] has points of inflection is
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 12a{x^2} + 6bx + 2c = 0\]
We will find the roots of the quadratic equation \[12a{x^2} + 6bx + 2c = 0\] using the quadratic formula to find the required conditions.
The quadratic formula states that the roots of a quadratic equation \[A{x^2} + Bx + C = 0\] are given by \[x = \dfrac{{ - B \pm \sqrt D }}{{2A}}\], where \[D\] is the discriminant given by the formula \[D = {B^2} - 4AC\].
First, let us find the value of the discriminant.
Comparing the equation \[12a{x^2} + 6bx + 2c = 0\] with the standard form of a quadratic equation \[A{x^2} + Bx + C = 0\], we get
\[A = 12a\], \[B = 6b\], and \[C = 2c\]
Substituting \[A = 12a\], \[B = 6b\], and \[C = 2c\] in the formula for discriminant, we get
\[ \Rightarrow D = {\left( {6b} \right)^2} - 4\left( {12a} \right)\left( {2c} \right)\]
Simplifying the expression, we get
\[ \Rightarrow D = 36{b^2} - 96ac\]
Now, substituting \[A = 12a\], \[B = 6b\], and \[D = 36{b^2} - 96ac\] in the quadratic formula, we get
\[ \Rightarrow x = \dfrac{{ - 6b \pm \sqrt {36{b^2} - 96ac} }}{{2 \times 12a}}\]
Therefore, we get
\[\Rightarrow \sqrt {36{b^2} - 96ac} > 0\]
Squaring both sides, we get
\[ \Rightarrow 36{b^2} - 96ac > 0\]
Dividing both sides by 12, we get
$\Rightarrow \dfrac{{36{b^2} - 96ac}}{{12}} > \dfrac{0}{{12}} \\
\Rightarrow 3{b^2} - 8ac > 0 \\ $
Therefore, the condition for \[y = a{x^4} + b{x^3} + c{x^2} + dx + e\] to have points of inflection is \[3{b^2} - 8ac > 0\].
Note:
We simplified \[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4} + b{x^3} + c{x^2} + dx + e} \right)}}{{dx}}\] to \[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}}\] and \[\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3} + 3b{x^2} + 2cx + d} \right)}}{{dx}}\] to \[\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {3b{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {2cx} \right)}}{{dx}} + \dfrac{{d\left( d \right)}}{{dx}}\]. This is because the right hand side is a derivative of the sum of functions. The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Here, we need to find the condition for which the given equation has points of inflection. A function \[f\left( x \right)\] has points of inflection if its second derivative is equal to zero, that is \[f''\left( x \right) = 0\]. First, we will find the second derivative of the given function. Then, we will solve the resulting quadratic function using the quadratic formula and use the expression with the determinant to find the required condition.
Formula Used:
1) The derivative of a function of the form \[af\left( x \right) + b\] can be written as \[\dfrac{{d\left( {af\left( x \right) + b} \right)}}{{dx}} = a\dfrac{{d\left( {f\left( x \right)} \right)}}{x} + b\].
2) The derivative of the function of the form \[f\left( x \right) = {x^n}\] is written as \[f'\left( x \right) = n{x^{n - 1}}\].
3)The derivative of a constant is always 0.
4) The quadratic formula states that the roots of a quadratic equation \[A{x^2} + Bx + C = 0\] are given by \[x = \dfrac{{ - B \pm \sqrt D }}{{2A}}\], where \[D\] is the discriminant given by the formula \[D = {B^2} - 4AC\].
Complete step by step solution:
A function \[f\left( x \right)\] has points of inflection if its second derivative is equal to zero, that is \[f''\left( x \right) = 0\].
First, we will find the first derivative of the given function.
Differentiating both sides of the equation with respect to \[x\], we get
\[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4} + b{x^3} + c{x^2} + dx + e} \right)}}{{dx}}\]
The right hand side is the derivative of a sum of functions.
Therefore, we can simplify the equation to get
\[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}}\]
Therefore, the equation becomes
We know that the derivative of a function of the form \[af\left( x \right) + b\] can be written as \[\dfrac{{d\left( {af\left( x \right) + b} \right)}}{{dx}} = a\dfrac{{d\left( {f\left( x \right)} \right)}}{x} + b\].
Therefore, we get
\[ \Rightarrow \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}}\]
\[ \Rightarrow \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} = b\dfrac{{d\left( {{x^3}} \right)}}{{dx}}\]
\[ \Rightarrow \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} = c\dfrac{{d\left( {{x^2}} \right)}}{{dx}}\]
\[ \Rightarrow \dfrac{{d\left( {dx} \right)}}{{dx}} = d\dfrac{{d\left( x \right)}}{{dx}}\]
\[ \Rightarrow \dfrac{{d\left( e \right)}}{{dx}} = e\dfrac{{d\left( 1 \right)}}{{dx}}\]
Substituting \[\dfrac{{d\left( {a{x^4}} \right)}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}}\], \[\dfrac{{d\left( {b{x^3}} \right)}}{{dx}} = b\dfrac{{d\left( {{x^3}} \right)}}{{dx}}\], \[\dfrac{{d\left( {c{x^2}} \right)}}{{dx}} = c\dfrac{{d\left( {{x^2}} \right)}}{{dx}}\], \[\dfrac{{d\left( {dx} \right)}}{{dx}} = d\dfrac{{d\left( x \right)}}{{dx}}\], and \[\dfrac{{d\left( e \right)}}{{dx}} = e\dfrac{{d\left( 1 \right)}}{{dx}}\] in the equation \[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}} + b\dfrac{{d\left( {{x^3}} \right)}}{{dx}} + c\dfrac{{d\left( {{x^2}} \right)}}{{dx}} + d\dfrac{{d\left( x \right)}}{{dx}} + e\dfrac{{d\left( 1 \right)}}{{dx}}\]
The derivative of the function of the form \[f\left( x \right) = {x^n}\] is written as \[f'\left( x \right) = n{x^{n - 1}}\].
The derivative of a constant is always 0.
Therefore, the equation becomes
$ \Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( {1 \times {x^0}} \right) + e\left( 0 \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( {1 \times 1} \right) + 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( 1 \right) \\ $
Multiplying the terms of the expression, we get the first derivative as
\[ \Rightarrow \dfrac{{dy}}{{dx}} = 4a{x^3} + 3b{x^2} + 2cx + d\]
Now, we will differentiate the first derivative to find the second derivative.
Differentiating both sides of the equation with respect to \[x\], we get
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3} + 3b{x^2} + 2cx + d} \right)}}{{dx}} \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {3b{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {2cx} \right)}}{{dx}} + \dfrac{{d\left( d \right)}}{{dx}} \\ $
Simplifying the expression, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 4a\dfrac{{d\left( {{x^3}} \right)}}{{dx}} + 3b\dfrac{{d\left( {{x^2}} \right)}}{{dx}} + 2c\dfrac{{d\left( x \right)}}{{dx}} + d\dfrac{{d\left( 1 \right)}}{{dx}}\]
Therefore, we get
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 4a\left( {3{x^2}} \right) + 3b\left( {2x} \right) + 2c\left( 1 \right) + d\left( 0 \right)\]
Multiplying the terms of the expression, we get the first derivative as
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 12a{x^2} + 6bx + 2c\]
This is the second derivative of \[y = a{x^4} + b{x^3} + c{x^2} + dx + e\].
Now, a function \[f\left( x \right)\] has points of inflection if its second derivative is equal to zero, that is \[f''\left( x \right) = 0\].
Therefore, the condition such that \[y = a{x^4} + b{x^3} + c{x^2} + dx + e\] has points of inflection is
\[ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 12a{x^2} + 6bx + 2c = 0\]
We will find the roots of the quadratic equation \[12a{x^2} + 6bx + 2c = 0\] using the quadratic formula to find the required conditions.
The quadratic formula states that the roots of a quadratic equation \[A{x^2} + Bx + C = 0\] are given by \[x = \dfrac{{ - B \pm \sqrt D }}{{2A}}\], where \[D\] is the discriminant given by the formula \[D = {B^2} - 4AC\].
First, let us find the value of the discriminant.
Comparing the equation \[12a{x^2} + 6bx + 2c = 0\] with the standard form of a quadratic equation \[A{x^2} + Bx + C = 0\], we get
\[A = 12a\], \[B = 6b\], and \[C = 2c\]
Substituting \[A = 12a\], \[B = 6b\], and \[C = 2c\] in the formula for discriminant, we get
\[ \Rightarrow D = {\left( {6b} \right)^2} - 4\left( {12a} \right)\left( {2c} \right)\]
Simplifying the expression, we get
\[ \Rightarrow D = 36{b^2} - 96ac\]
Now, substituting \[A = 12a\], \[B = 6b\], and \[D = 36{b^2} - 96ac\] in the quadratic formula, we get
\[ \Rightarrow x = \dfrac{{ - 6b \pm \sqrt {36{b^2} - 96ac} }}{{2 \times 12a}}\]
Therefore, we get
\[\Rightarrow \sqrt {36{b^2} - 96ac} > 0\]
Squaring both sides, we get
\[ \Rightarrow 36{b^2} - 96ac > 0\]
Dividing both sides by 12, we get
$\Rightarrow \dfrac{{36{b^2} - 96ac}}{{12}} > \dfrac{0}{{12}} \\
\Rightarrow 3{b^2} - 8ac > 0 \\ $
Therefore, the condition for \[y = a{x^4} + b{x^3} + c{x^2} + dx + e\] to have points of inflection is \[3{b^2} - 8ac > 0\].
Note:
We simplified \[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4} + b{x^3} + c{x^2} + dx + e} \right)}}{{dx}}\] to \[\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}}\] and \[\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3} + 3b{x^2} + 2cx + d} \right)}}{{dx}}\] to \[\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {3b{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {2cx} \right)}}{{dx}} + \dfrac{{d\left( d \right)}}{{dx}}\]. This is because the right hand side is a derivative of the sum of functions. The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

