Answer
Verified
435.9k+ views
Hint: In this problem, first we need to choose the integers from any two brackets and \[x\] from all other brackets to form the term of \[{x^{n - 2}}\]. Next, find the coefficient of \[{x^{n - 2}}\].
Complete step by step answer:
From the given expression, it can be observed that there are n brackets. To form the term \[{x^{n - 2}}\], we need to choose integers from any two brackets and \[x\] from all the other brackets and multiplied.
Now, the coefficient of \[{x^{n - 2}}\] is calculated as shown below.
\[
\,\,\,\,\,{\text{coefficient of }}{x^{n - 2}}\left( C \right) = \left( {1 \times 2 + 1 \times 3 + \ldots + 1 \times n} \right) + \left( {2 \times 3 + 2 \times 4 + \ldots + 2 \times n} \right) + \ldots + \left( {\left( {n - 1} \right) \times n} \right) \\
\Rightarrow C = \left( {\dfrac{{n\left( {n + 1} \right)}}{2} - 1} \right) + 2\left( {\dfrac{{n\left( {n + 1} \right)}}{2} - 1 - 2} \right) + \ldots + \left( {n - 1} \right)\left( {\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {1 + 2 + \ldots + \left( {n - 1} \right)} \right)} \right) \\
\Rightarrow C = \left\{ {\left( {1 + 2 + \ldots + \left( {n - 1} \right)} \right)\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} - \left\{ {1 + 2\left( {1 + 2} \right) + 3\left( {1 + 2 + 3} \right) + \ldots + \left( {n - 1} \right)\left( {1 + \ldots + \left( {n - 1} \right)} \right)} \right\} \\
\Rightarrow C = \left\{ {\dfrac{{\left( {n - 1} \right)n}}{2} \times \dfrac{{n\left( {n + 1} \right)}}{2}} \right\} - \left\{ {\sum\limits_1^{n - 1} {k\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)} } \right\} \\
\Rightarrow C = \left\{ {\dfrac{{{n^2}\left( {{n^2} - 1} \right)}}{4}} \right\} - \left\{ {\sum\limits_1^{n - 1} {\dfrac{{{k^3} + {k^2}}}{2}} } \right\} \\
\]
Further, simplify the above expression.
\[
\,\,\,\,\,\,C = \left\{ {\dfrac{{{n^2}\left( {{n^2} - 1} \right)}}{4}} \right\} - \dfrac{1}{2}\left\{ {{{\left( {\dfrac{{\left( {n - 1} \right)n}}{2}} \right)}^2} + \dfrac{{\left( {n - 1} \right)n\left( {2n - 1} \right)}}{6}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {n\left( {n + 1} \right) - \dfrac{{n\left( {n - 1} \right)}}{2} - \dfrac{{2n - 1}}{3}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {\dfrac{{n\left( {n + 3} \right)}}{2} - \dfrac{{2n - 1}}{3}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {\dfrac{{3{n^2} + 9n - 4n + 2}}{6}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}} \\
\]
Thus, the coefficient of \[{x^{n - 2}}\] is \[\dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}}\]
So, the correct answer is “Option B”.
Note: The formula for the sum of \[n\] natural number is \[\dfrac{{n\left( {n + 1} \right)}}{2}\]. The formula for the sum of the square of the \[n\] natural number is \[\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\].
Complete step by step answer:
From the given expression, it can be observed that there are n brackets. To form the term \[{x^{n - 2}}\], we need to choose integers from any two brackets and \[x\] from all the other brackets and multiplied.
Now, the coefficient of \[{x^{n - 2}}\] is calculated as shown below.
\[
\,\,\,\,\,{\text{coefficient of }}{x^{n - 2}}\left( C \right) = \left( {1 \times 2 + 1 \times 3 + \ldots + 1 \times n} \right) + \left( {2 \times 3 + 2 \times 4 + \ldots + 2 \times n} \right) + \ldots + \left( {\left( {n - 1} \right) \times n} \right) \\
\Rightarrow C = \left( {\dfrac{{n\left( {n + 1} \right)}}{2} - 1} \right) + 2\left( {\dfrac{{n\left( {n + 1} \right)}}{2} - 1 - 2} \right) + \ldots + \left( {n - 1} \right)\left( {\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {1 + 2 + \ldots + \left( {n - 1} \right)} \right)} \right) \\
\Rightarrow C = \left\{ {\left( {1 + 2 + \ldots + \left( {n - 1} \right)} \right)\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} - \left\{ {1 + 2\left( {1 + 2} \right) + 3\left( {1 + 2 + 3} \right) + \ldots + \left( {n - 1} \right)\left( {1 + \ldots + \left( {n - 1} \right)} \right)} \right\} \\
\Rightarrow C = \left\{ {\dfrac{{\left( {n - 1} \right)n}}{2} \times \dfrac{{n\left( {n + 1} \right)}}{2}} \right\} - \left\{ {\sum\limits_1^{n - 1} {k\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)} } \right\} \\
\Rightarrow C = \left\{ {\dfrac{{{n^2}\left( {{n^2} - 1} \right)}}{4}} \right\} - \left\{ {\sum\limits_1^{n - 1} {\dfrac{{{k^3} + {k^2}}}{2}} } \right\} \\
\]
Further, simplify the above expression.
\[
\,\,\,\,\,\,C = \left\{ {\dfrac{{{n^2}\left( {{n^2} - 1} \right)}}{4}} \right\} - \dfrac{1}{2}\left\{ {{{\left( {\dfrac{{\left( {n - 1} \right)n}}{2}} \right)}^2} + \dfrac{{\left( {n - 1} \right)n\left( {2n - 1} \right)}}{6}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {n\left( {n + 1} \right) - \dfrac{{n\left( {n - 1} \right)}}{2} - \dfrac{{2n - 1}}{3}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {\dfrac{{n\left( {n + 3} \right)}}{2} - \dfrac{{2n - 1}}{3}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {\dfrac{{3{n^2} + 9n - 4n + 2}}{6}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}} \\
\]
Thus, the coefficient of \[{x^{n - 2}}\] is \[\dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}}\]
So, the correct answer is “Option B”.
Note: The formula for the sum of \[n\] natural number is \[\dfrac{{n\left( {n + 1} \right)}}{2}\]. The formula for the sum of the square of the \[n\] natural number is \[\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE