
The coefficient of \[{x^{n - 2}}\] in the polynomial \[\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) \ldots \ldots \left( {x - n} \right)\] is
A \[\dfrac{{n\left( {{n^2} + 2} \right)\left( {3n + 1} \right)}}{{24}}\]
B \[\dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}}\]
C \[\dfrac{{n\left( {{n^2} + 1} \right)\left( {3n + 4} \right)}}{{24}}\]
D None of these
Answer
571.8k+ views
Hint: In this problem, first we need to choose the integers from any two brackets and \[x\] from all other brackets to form the term of \[{x^{n - 2}}\]. Next, find the coefficient of \[{x^{n - 2}}\].
Complete step by step answer:
From the given expression, it can be observed that there are n brackets. To form the term \[{x^{n - 2}}\], we need to choose integers from any two brackets and \[x\] from all the other brackets and multiplied.
Now, the coefficient of \[{x^{n - 2}}\] is calculated as shown below.
\[
\,\,\,\,\,{\text{coefficient of }}{x^{n - 2}}\left( C \right) = \left( {1 \times 2 + 1 \times 3 + \ldots + 1 \times n} \right) + \left( {2 \times 3 + 2 \times 4 + \ldots + 2 \times n} \right) + \ldots + \left( {\left( {n - 1} \right) \times n} \right) \\
\Rightarrow C = \left( {\dfrac{{n\left( {n + 1} \right)}}{2} - 1} \right) + 2\left( {\dfrac{{n\left( {n + 1} \right)}}{2} - 1 - 2} \right) + \ldots + \left( {n - 1} \right)\left( {\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {1 + 2 + \ldots + \left( {n - 1} \right)} \right)} \right) \\
\Rightarrow C = \left\{ {\left( {1 + 2 + \ldots + \left( {n - 1} \right)} \right)\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} - \left\{ {1 + 2\left( {1 + 2} \right) + 3\left( {1 + 2 + 3} \right) + \ldots + \left( {n - 1} \right)\left( {1 + \ldots + \left( {n - 1} \right)} \right)} \right\} \\
\Rightarrow C = \left\{ {\dfrac{{\left( {n - 1} \right)n}}{2} \times \dfrac{{n\left( {n + 1} \right)}}{2}} \right\} - \left\{ {\sum\limits_1^{n - 1} {k\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)} } \right\} \\
\Rightarrow C = \left\{ {\dfrac{{{n^2}\left( {{n^2} - 1} \right)}}{4}} \right\} - \left\{ {\sum\limits_1^{n - 1} {\dfrac{{{k^3} + {k^2}}}{2}} } \right\} \\
\]
Further, simplify the above expression.
\[
\,\,\,\,\,\,C = \left\{ {\dfrac{{{n^2}\left( {{n^2} - 1} \right)}}{4}} \right\} - \dfrac{1}{2}\left\{ {{{\left( {\dfrac{{\left( {n - 1} \right)n}}{2}} \right)}^2} + \dfrac{{\left( {n - 1} \right)n\left( {2n - 1} \right)}}{6}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {n\left( {n + 1} \right) - \dfrac{{n\left( {n - 1} \right)}}{2} - \dfrac{{2n - 1}}{3}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {\dfrac{{n\left( {n + 3} \right)}}{2} - \dfrac{{2n - 1}}{3}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {\dfrac{{3{n^2} + 9n - 4n + 2}}{6}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}} \\
\]
Thus, the coefficient of \[{x^{n - 2}}\] is \[\dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}}\]
So, the correct answer is “Option B”.
Note: The formula for the sum of \[n\] natural number is \[\dfrac{{n\left( {n + 1} \right)}}{2}\]. The formula for the sum of the square of the \[n\] natural number is \[\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\].
Complete step by step answer:
From the given expression, it can be observed that there are n brackets. To form the term \[{x^{n - 2}}\], we need to choose integers from any two brackets and \[x\] from all the other brackets and multiplied.
Now, the coefficient of \[{x^{n - 2}}\] is calculated as shown below.
\[
\,\,\,\,\,{\text{coefficient of }}{x^{n - 2}}\left( C \right) = \left( {1 \times 2 + 1 \times 3 + \ldots + 1 \times n} \right) + \left( {2 \times 3 + 2 \times 4 + \ldots + 2 \times n} \right) + \ldots + \left( {\left( {n - 1} \right) \times n} \right) \\
\Rightarrow C = \left( {\dfrac{{n\left( {n + 1} \right)}}{2} - 1} \right) + 2\left( {\dfrac{{n\left( {n + 1} \right)}}{2} - 1 - 2} \right) + \ldots + \left( {n - 1} \right)\left( {\dfrac{{n\left( {n + 1} \right)}}{2} - \left( {1 + 2 + \ldots + \left( {n - 1} \right)} \right)} \right) \\
\Rightarrow C = \left\{ {\left( {1 + 2 + \ldots + \left( {n - 1} \right)} \right)\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} - \left\{ {1 + 2\left( {1 + 2} \right) + 3\left( {1 + 2 + 3} \right) + \ldots + \left( {n - 1} \right)\left( {1 + \ldots + \left( {n - 1} \right)} \right)} \right\} \\
\Rightarrow C = \left\{ {\dfrac{{\left( {n - 1} \right)n}}{2} \times \dfrac{{n\left( {n + 1} \right)}}{2}} \right\} - \left\{ {\sum\limits_1^{n - 1} {k\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)} } \right\} \\
\Rightarrow C = \left\{ {\dfrac{{{n^2}\left( {{n^2} - 1} \right)}}{4}} \right\} - \left\{ {\sum\limits_1^{n - 1} {\dfrac{{{k^3} + {k^2}}}{2}} } \right\} \\
\]
Further, simplify the above expression.
\[
\,\,\,\,\,\,C = \left\{ {\dfrac{{{n^2}\left( {{n^2} - 1} \right)}}{4}} \right\} - \dfrac{1}{2}\left\{ {{{\left( {\dfrac{{\left( {n - 1} \right)n}}{2}} \right)}^2} + \dfrac{{\left( {n - 1} \right)n\left( {2n - 1} \right)}}{6}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {n\left( {n + 1} \right) - \dfrac{{n\left( {n - 1} \right)}}{2} - \dfrac{{2n - 1}}{3}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {\dfrac{{n\left( {n + 3} \right)}}{2} - \dfrac{{2n - 1}}{3}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {n - 1} \right)}}{4}\left\{ {\dfrac{{3{n^2} + 9n - 4n + 2}}{6}} \right\} \\
\Rightarrow C = \dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}} \\
\]
Thus, the coefficient of \[{x^{n - 2}}\] is \[\dfrac{{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)}}{{24}}\]
So, the correct answer is “Option B”.
Note: The formula for the sum of \[n\] natural number is \[\dfrac{{n\left( {n + 1} \right)}}{2}\]. The formula for the sum of the square of the \[n\] natural number is \[\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\].
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

