
The coefficient of $$x^{7}$$ in $$\left( 1-x-x^{2}+x^{3}\right)^{6} $$ is
A. -144
B. 144
C. -128
D. -142
Answer
584.7k+ views
Hint: In this question it is given that we have to find the coefficient of $$x^{7}$$ from the expression $$\left( 1-x-x^{2}+x^{3}\right)^{6} $$.
So to find the solution we need to know about binomial expansion, which is $$\left( 1-a\right)^{n} =\ ^{n} C_{0}-\ ^{n} C_{1}\cdot a+\ ^{n} C_{2}\cdot a^{2}-\ldots +(-1)^{n}\ ^{n} C_{n}\cdot a^{n}$$.
So by this expression we are able to find the solution.
Complete step-by-step answer:
Here given expression,
$$\left( 1-x-x^{2}+x^{3}\right)^{6} $$
taking $x^2$ common from 3rd and 4th terms, we get.
$$=\left\{ \left( 1-x\right) -x^{2}\left( 1-x\right) \right\}^{6} $$
$$=\left\{ \left( 1-x\right) \left( 1-x^{2}\right) \right\}^{6} $$
$$=\left( 1-x\right)^{6} \left( 1-x^{2}\right)^{6} $$
By expanding the 1st and 2nd terms by the use of Binomial expansion, we get,
$$=\left( {}^{6}C_{0}-\ ^{6} C_{1}x+\ ^{6} C_{2}x^{2}-\ldots +\ ^{6} C_{6}x^{6}\right) \left( {}^{6}C_{0}-\ ^{6} C_{1}\left( {}x^{2}\right) +\ ^{6} C_{2}\left( x^{2}\right)^{2} -\ ^{6} C_{3}\left( x^{2}\right)^{3} +\ldots +\ ^{6} C_{6}\left( x^{2}\right)^{6} \right) $$
On simplifying the power of ‘x’, we get,
$$=\left( {}^{6}C_{0}-\ ^{6} C_{1}x+\ ^{6} C_{2}x^{2}-\ldots +\ ^{6} C_{6}x^{6}\right) \left( {}^{6}C_{0}-\ ^{6} C_{1}x^{2}+\ ^{6} C_{2}x^{4}-\ ^{6} C_{3}x^{6}+\ldots +\ ^{6} C_{6}x^{12}\right) $$
Now we have to find the coefficient of $$x^{7}$$,
Therefore, the coefficient of $$x^{7}$$ is
$$=\left( \text{coefficient of} \ x\times \text{coefficient of} \ x^{6}\right) +\left( \text{coefficient of} \ x^{3}\times \text{coefficient of} \ x^{4}\right) +\left( \text{coefficient of} \ x^{5}\times \text{coefficient of} \ x^{2}\right) $$
$$=\left\{ \left( -{}^{6}C_{1}\right) \times \left( -{}^{6}C_{3}\right) \right\} +\left\{ \left( -{}^{6}C_{3}\right) \times \left( {}^{6}C_{2}\right) \right\} +\left\{ \left( -{}^{6}C_{5}\right) \times \left(-{}^{6}C_{1}\right) \right\} $$
$$=\left( {}^{6}C_{1}\ ^{6} C_{3}\right) -\left( {}^{6}C_{3}\ ^{6} C_{2}\right) +\left( {}^{6}C_{5}\ ^{6} C_{1}\right) $$
We know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
$$\dfrac{6!}{1!\left( 6-1\right) !} \times \dfrac{6!}{3!\left( 6-3\right) !} -\dfrac{6!}{3!\left( 6-3\right) !} \times \dfrac{6!}{2!\left( 6-2\right) !} +\dfrac{6!}{5!\left( 6-5\right) !} \times \dfrac{6!}{1!\left( 6-1\right) !}$$
$$=\dfrac{6!}{1!\cdot 5!} \times \dfrac{6!}{3!\cdot 3!} -\dfrac{6!}{3!\cdot 3!} \times \dfrac{6!}{2!\cdot 4!} +\dfrac{6!}{5!\cdot 1!} \times \dfrac{6!}{1!\cdot 5!}$$
$$=\dfrac{6\cdot 5!}{5!} \times \dfrac{6\cdot 5\cdot 4\cdot 3!}{3\cdot 2\cdot 1\cdot 3!} -\dfrac{6\cdot 5\cdot 4\cdot 3!}{3\cdot 2\cdot 1\cdot 3!} \times \dfrac{6\cdot 5\cdot 4!}{2\cdot 1\cdot 4!} +\dfrac{6\cdot 5!}{5!} \times \dfrac{6\cdot 5!}{5!}$$
$$=6\times 5\times 4-5\times 4\times \dfrac{6\cdot 5}{2} +6\times 6$$
$$=(6\times 5\times 4)-(5\times 4\times 3\times 5)+(6\times 6)$$
$$=120-300+36$$
$$=-144$$
Therefore the coefficient of $$x^{7}$$ is -144.
Hence the correct option is option A.
Note: While solving this type of question you need to know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
Where $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$ and
$$n!=n\cdot \left( n-1\right) !$$
Also while finding the coefficient of $$ ^{7}$$ you no need to multiply each and every term, it will make the solution lengthy.
So to find the solution we need to know about binomial expansion, which is $$\left( 1-a\right)^{n} =\ ^{n} C_{0}-\ ^{n} C_{1}\cdot a+\ ^{n} C_{2}\cdot a^{2}-\ldots +(-1)^{n}\ ^{n} C_{n}\cdot a^{n}$$.
So by this expression we are able to find the solution.
Complete step-by-step answer:
Here given expression,
$$\left( 1-x-x^{2}+x^{3}\right)^{6} $$
taking $x^2$ common from 3rd and 4th terms, we get.
$$=\left\{ \left( 1-x\right) -x^{2}\left( 1-x\right) \right\}^{6} $$
$$=\left\{ \left( 1-x\right) \left( 1-x^{2}\right) \right\}^{6} $$
$$=\left( 1-x\right)^{6} \left( 1-x^{2}\right)^{6} $$
By expanding the 1st and 2nd terms by the use of Binomial expansion, we get,
$$=\left( {}^{6}C_{0}-\ ^{6} C_{1}x+\ ^{6} C_{2}x^{2}-\ldots +\ ^{6} C_{6}x^{6}\right) \left( {}^{6}C_{0}-\ ^{6} C_{1}\left( {}x^{2}\right) +\ ^{6} C_{2}\left( x^{2}\right)^{2} -\ ^{6} C_{3}\left( x^{2}\right)^{3} +\ldots +\ ^{6} C_{6}\left( x^{2}\right)^{6} \right) $$
On simplifying the power of ‘x’, we get,
$$=\left( {}^{6}C_{0}-\ ^{6} C_{1}x+\ ^{6} C_{2}x^{2}-\ldots +\ ^{6} C_{6}x^{6}\right) \left( {}^{6}C_{0}-\ ^{6} C_{1}x^{2}+\ ^{6} C_{2}x^{4}-\ ^{6} C_{3}x^{6}+\ldots +\ ^{6} C_{6}x^{12}\right) $$
Now we have to find the coefficient of $$x^{7}$$,
Therefore, the coefficient of $$x^{7}$$ is
$$=\left( \text{coefficient of} \ x\times \text{coefficient of} \ x^{6}\right) +\left( \text{coefficient of} \ x^{3}\times \text{coefficient of} \ x^{4}\right) +\left( \text{coefficient of} \ x^{5}\times \text{coefficient of} \ x^{2}\right) $$
$$=\left\{ \left( -{}^{6}C_{1}\right) \times \left( -{}^{6}C_{3}\right) \right\} +\left\{ \left( -{}^{6}C_{3}\right) \times \left( {}^{6}C_{2}\right) \right\} +\left\{ \left( -{}^{6}C_{5}\right) \times \left(-{}^{6}C_{1}\right) \right\} $$
$$=\left( {}^{6}C_{1}\ ^{6} C_{3}\right) -\left( {}^{6}C_{3}\ ^{6} C_{2}\right) +\left( {}^{6}C_{5}\ ^{6} C_{1}\right) $$
We know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
$$\dfrac{6!}{1!\left( 6-1\right) !} \times \dfrac{6!}{3!\left( 6-3\right) !} -\dfrac{6!}{3!\left( 6-3\right) !} \times \dfrac{6!}{2!\left( 6-2\right) !} +\dfrac{6!}{5!\left( 6-5\right) !} \times \dfrac{6!}{1!\left( 6-1\right) !}$$
$$=\dfrac{6!}{1!\cdot 5!} \times \dfrac{6!}{3!\cdot 3!} -\dfrac{6!}{3!\cdot 3!} \times \dfrac{6!}{2!\cdot 4!} +\dfrac{6!}{5!\cdot 1!} \times \dfrac{6!}{1!\cdot 5!}$$
$$=\dfrac{6\cdot 5!}{5!} \times \dfrac{6\cdot 5\cdot 4\cdot 3!}{3\cdot 2\cdot 1\cdot 3!} -\dfrac{6\cdot 5\cdot 4\cdot 3!}{3\cdot 2\cdot 1\cdot 3!} \times \dfrac{6\cdot 5\cdot 4!}{2\cdot 1\cdot 4!} +\dfrac{6\cdot 5!}{5!} \times \dfrac{6\cdot 5!}{5!}$$
$$=6\times 5\times 4-5\times 4\times \dfrac{6\cdot 5}{2} +6\times 6$$
$$=(6\times 5\times 4)-(5\times 4\times 3\times 5)+(6\times 6)$$
$$=120-300+36$$
$$=-144$$
Therefore the coefficient of $$x^{7}$$ is -144.
Hence the correct option is option A.
Note: While solving this type of question you need to know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
Where $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$ and
$$n!=n\cdot \left( n-1\right) !$$
Also while finding the coefficient of $$ ^{7}$$ you no need to multiply each and every term, it will make the solution lengthy.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

