
The coefficient of $$x^{7}$$ in $$\left( 1-x-x^{2}+x^{3}\right)^{6} $$ is
A. -144
B. 144
C. -128
D. -142
Answer
599.4k+ views
Hint: In this question it is given that we have to find the coefficient of $$x^{7}$$ from the expression $$\left( 1-x-x^{2}+x^{3}\right)^{6} $$.
So to find the solution we need to know about binomial expansion, which is $$\left( 1-a\right)^{n} =\ ^{n} C_{0}-\ ^{n} C_{1}\cdot a+\ ^{n} C_{2}\cdot a^{2}-\ldots +(-1)^{n}\ ^{n} C_{n}\cdot a^{n}$$.
So by this expression we are able to find the solution.
Complete step-by-step answer:
Here given expression,
$$\left( 1-x-x^{2}+x^{3}\right)^{6} $$
taking $x^2$ common from 3rd and 4th terms, we get.
$$=\left\{ \left( 1-x\right) -x^{2}\left( 1-x\right) \right\}^{6} $$
$$=\left\{ \left( 1-x\right) \left( 1-x^{2}\right) \right\}^{6} $$
$$=\left( 1-x\right)^{6} \left( 1-x^{2}\right)^{6} $$
By expanding the 1st and 2nd terms by the use of Binomial expansion, we get,
$$=\left( {}^{6}C_{0}-\ ^{6} C_{1}x+\ ^{6} C_{2}x^{2}-\ldots +\ ^{6} C_{6}x^{6}\right) \left( {}^{6}C_{0}-\ ^{6} C_{1}\left( {}x^{2}\right) +\ ^{6} C_{2}\left( x^{2}\right)^{2} -\ ^{6} C_{3}\left( x^{2}\right)^{3} +\ldots +\ ^{6} C_{6}\left( x^{2}\right)^{6} \right) $$
On simplifying the power of ‘x’, we get,
$$=\left( {}^{6}C_{0}-\ ^{6} C_{1}x+\ ^{6} C_{2}x^{2}-\ldots +\ ^{6} C_{6}x^{6}\right) \left( {}^{6}C_{0}-\ ^{6} C_{1}x^{2}+\ ^{6} C_{2}x^{4}-\ ^{6} C_{3}x^{6}+\ldots +\ ^{6} C_{6}x^{12}\right) $$
Now we have to find the coefficient of $$x^{7}$$,
Therefore, the coefficient of $$x^{7}$$ is
$$=\left( \text{coefficient of} \ x\times \text{coefficient of} \ x^{6}\right) +\left( \text{coefficient of} \ x^{3}\times \text{coefficient of} \ x^{4}\right) +\left( \text{coefficient of} \ x^{5}\times \text{coefficient of} \ x^{2}\right) $$
$$=\left\{ \left( -{}^{6}C_{1}\right) \times \left( -{}^{6}C_{3}\right) \right\} +\left\{ \left( -{}^{6}C_{3}\right) \times \left( {}^{6}C_{2}\right) \right\} +\left\{ \left( -{}^{6}C_{5}\right) \times \left(-{}^{6}C_{1}\right) \right\} $$
$$=\left( {}^{6}C_{1}\ ^{6} C_{3}\right) -\left( {}^{6}C_{3}\ ^{6} C_{2}\right) +\left( {}^{6}C_{5}\ ^{6} C_{1}\right) $$
We know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
$$\dfrac{6!}{1!\left( 6-1\right) !} \times \dfrac{6!}{3!\left( 6-3\right) !} -\dfrac{6!}{3!\left( 6-3\right) !} \times \dfrac{6!}{2!\left( 6-2\right) !} +\dfrac{6!}{5!\left( 6-5\right) !} \times \dfrac{6!}{1!\left( 6-1\right) !}$$
$$=\dfrac{6!}{1!\cdot 5!} \times \dfrac{6!}{3!\cdot 3!} -\dfrac{6!}{3!\cdot 3!} \times \dfrac{6!}{2!\cdot 4!} +\dfrac{6!}{5!\cdot 1!} \times \dfrac{6!}{1!\cdot 5!}$$
$$=\dfrac{6\cdot 5!}{5!} \times \dfrac{6\cdot 5\cdot 4\cdot 3!}{3\cdot 2\cdot 1\cdot 3!} -\dfrac{6\cdot 5\cdot 4\cdot 3!}{3\cdot 2\cdot 1\cdot 3!} \times \dfrac{6\cdot 5\cdot 4!}{2\cdot 1\cdot 4!} +\dfrac{6\cdot 5!}{5!} \times \dfrac{6\cdot 5!}{5!}$$
$$=6\times 5\times 4-5\times 4\times \dfrac{6\cdot 5}{2} +6\times 6$$
$$=(6\times 5\times 4)-(5\times 4\times 3\times 5)+(6\times 6)$$
$$=120-300+36$$
$$=-144$$
Therefore the coefficient of $$x^{7}$$ is -144.
Hence the correct option is option A.
Note: While solving this type of question you need to know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
Where $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$ and
$$n!=n\cdot \left( n-1\right) !$$
Also while finding the coefficient of $$ ^{7}$$ you no need to multiply each and every term, it will make the solution lengthy.
So to find the solution we need to know about binomial expansion, which is $$\left( 1-a\right)^{n} =\ ^{n} C_{0}-\ ^{n} C_{1}\cdot a+\ ^{n} C_{2}\cdot a^{2}-\ldots +(-1)^{n}\ ^{n} C_{n}\cdot a^{n}$$.
So by this expression we are able to find the solution.
Complete step-by-step answer:
Here given expression,
$$\left( 1-x-x^{2}+x^{3}\right)^{6} $$
taking $x^2$ common from 3rd and 4th terms, we get.
$$=\left\{ \left( 1-x\right) -x^{2}\left( 1-x\right) \right\}^{6} $$
$$=\left\{ \left( 1-x\right) \left( 1-x^{2}\right) \right\}^{6} $$
$$=\left( 1-x\right)^{6} \left( 1-x^{2}\right)^{6} $$
By expanding the 1st and 2nd terms by the use of Binomial expansion, we get,
$$=\left( {}^{6}C_{0}-\ ^{6} C_{1}x+\ ^{6} C_{2}x^{2}-\ldots +\ ^{6} C_{6}x^{6}\right) \left( {}^{6}C_{0}-\ ^{6} C_{1}\left( {}x^{2}\right) +\ ^{6} C_{2}\left( x^{2}\right)^{2} -\ ^{6} C_{3}\left( x^{2}\right)^{3} +\ldots +\ ^{6} C_{6}\left( x^{2}\right)^{6} \right) $$
On simplifying the power of ‘x’, we get,
$$=\left( {}^{6}C_{0}-\ ^{6} C_{1}x+\ ^{6} C_{2}x^{2}-\ldots +\ ^{6} C_{6}x^{6}\right) \left( {}^{6}C_{0}-\ ^{6} C_{1}x^{2}+\ ^{6} C_{2}x^{4}-\ ^{6} C_{3}x^{6}+\ldots +\ ^{6} C_{6}x^{12}\right) $$
Now we have to find the coefficient of $$x^{7}$$,
Therefore, the coefficient of $$x^{7}$$ is
$$=\left( \text{coefficient of} \ x\times \text{coefficient of} \ x^{6}\right) +\left( \text{coefficient of} \ x^{3}\times \text{coefficient of} \ x^{4}\right) +\left( \text{coefficient of} \ x^{5}\times \text{coefficient of} \ x^{2}\right) $$
$$=\left\{ \left( -{}^{6}C_{1}\right) \times \left( -{}^{6}C_{3}\right) \right\} +\left\{ \left( -{}^{6}C_{3}\right) \times \left( {}^{6}C_{2}\right) \right\} +\left\{ \left( -{}^{6}C_{5}\right) \times \left(-{}^{6}C_{1}\right) \right\} $$
$$=\left( {}^{6}C_{1}\ ^{6} C_{3}\right) -\left( {}^{6}C_{3}\ ^{6} C_{2}\right) +\left( {}^{6}C_{5}\ ^{6} C_{1}\right) $$
We know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
$$\dfrac{6!}{1!\left( 6-1\right) !} \times \dfrac{6!}{3!\left( 6-3\right) !} -\dfrac{6!}{3!\left( 6-3\right) !} \times \dfrac{6!}{2!\left( 6-2\right) !} +\dfrac{6!}{5!\left( 6-5\right) !} \times \dfrac{6!}{1!\left( 6-1\right) !}$$
$$=\dfrac{6!}{1!\cdot 5!} \times \dfrac{6!}{3!\cdot 3!} -\dfrac{6!}{3!\cdot 3!} \times \dfrac{6!}{2!\cdot 4!} +\dfrac{6!}{5!\cdot 1!} \times \dfrac{6!}{1!\cdot 5!}$$
$$=\dfrac{6\cdot 5!}{5!} \times \dfrac{6\cdot 5\cdot 4\cdot 3!}{3\cdot 2\cdot 1\cdot 3!} -\dfrac{6\cdot 5\cdot 4\cdot 3!}{3\cdot 2\cdot 1\cdot 3!} \times \dfrac{6\cdot 5\cdot 4!}{2\cdot 1\cdot 4!} +\dfrac{6\cdot 5!}{5!} \times \dfrac{6\cdot 5!}{5!}$$
$$=6\times 5\times 4-5\times 4\times \dfrac{6\cdot 5}{2} +6\times 6$$
$$=(6\times 5\times 4)-(5\times 4\times 3\times 5)+(6\times 6)$$
$$=120-300+36$$
$$=-144$$
Therefore the coefficient of $$x^{7}$$ is -144.
Hence the correct option is option A.
Note: While solving this type of question you need to know that $${}^{n}C_{r}$$ can be written as, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$
Where $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$ and
$$n!=n\cdot \left( n-1\right) !$$
Also while finding the coefficient of $$ ^{7}$$ you no need to multiply each and every term, it will make the solution lengthy.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

