
The CI on a certain sum for 2 years is Rs.41 and SI is Rs.40. Then, the rate percent per annum is:
A.$4\% $
B.$5\% $
C.$6\% $
D.$8\% $
Answer
583.2k+ views
Hint: We will use the formula of CI as: ${\text{CI}} = P{\left( {1 + \dfrac{R}{{100}}} \right)^2} - P$ where P is the principle and rate of interest is R%. After putting the value of CI, we will use the algebraic identity: ${\left( {a + b} \right)^2} = \left( {{a^2} + 2ab + {b^2}} \right)$ for simplifying it further. Then, for SI, we will use the formula: ${\text{SI}} = \dfrac{{PRT}}{{100}}$ , where T is the time period and from this equation, we will calculate the value of PR and then we will substitute the value of PR in the equation obtained from the formula of CI to calculate the value of R i.e. the rate percent per annum.
Complete step-by-step answer:
We are given that CI on a certain amount is Rs.41 and SI is Rs.40 on a time interval of 2 years.
We are required to calculate the value of the rate percent per annum.
Let the principle be P with rate of interest as R% for 2 years.
Then, using the formula of CI: ${\text{CI}} = P{\left( {1 + \dfrac{R}{{100}}} \right)^2} - P$, we can write after putting the value of CI as
$
\Rightarrow {\text{CI}} = P{\left( {1 + \dfrac{R}{{100}}} \right)^2} - P \\
\Rightarrow 41 = P\left[ {{{\left( {1 + \dfrac{R}{{100}}} \right)}^2} - 1} \right] \\
$
Now, using the algebraic identity ${\left( {a + b} \right)^2} = \left( {{a^2} + 2ab + {b^2}} \right)$ to simplify it further, we get
$
\Rightarrow 41 = P\left[ {1 + \dfrac{{2R}}{{100}} + \dfrac{{{R^2}}}{{10000}} - 1} \right] \\
\Rightarrow 41 = P\left[ {\dfrac{{2R}}{{100}} + \dfrac{{{R^2}}}{{10000}}} \right] \\
\Rightarrow 41 = \dfrac{{2PR}}{{100}} + \dfrac{{P{R^2}}}{{10000}} \\
$
$ \Rightarrow 41 = \dfrac{{2PR}}{{100}} + \dfrac{{PR\left( R \right)}}{{10000}}$ – equation (1)
Now, using the formula of SI given by: ${\text{SI}} = \dfrac{{PRT}}{{100}}$, where T is the time period = 2 years, we can write
$
\Rightarrow {\text{SI}} = \dfrac{{PRT}}{{100}} \\
\Rightarrow 40 = \dfrac{{PR\left( 2 \right)}}{{100}} \\
\Rightarrow PR = \dfrac{{40\left( {100} \right)}}{2} = 2000 \\
$
Using this value of PR in equation (1), we get
$ \Rightarrow 41 = \dfrac{{2\left( {2000} \right)}}{{100}} + \dfrac{{R\left( {2000} \right)}}{{10000}}$
Simplifying this equation for the value of R, we get
$
\Rightarrow 41 = \dfrac{{40000}}{{100}} + \dfrac{R}{5} \\
\Rightarrow 41 = 40 + \dfrac{R}{5} \\
\Rightarrow 41 - 40 = \dfrac{R}{5} \\
\Rightarrow 1\left( 5 \right) = R \\
\Rightarrow R = 5\% \\
$
Hence, we get the value of the rate of interest as $5\% $.
Therefore, option (B) is correct.
Note: In this question, you may get confused while using the formulae of compound interest (CI) and simple interest (SI), since we have calculated the value of PR from SI and then substituted it in the equation obtained from the formula of CI. You may go wrong while solving for R from the equation obtained after putting PR = 2000. Such questions can be solved by direct implementation of the standard formulae related to the concepts given in the question.
Complete step-by-step answer:
We are given that CI on a certain amount is Rs.41 and SI is Rs.40 on a time interval of 2 years.
We are required to calculate the value of the rate percent per annum.
Let the principle be P with rate of interest as R% for 2 years.
Then, using the formula of CI: ${\text{CI}} = P{\left( {1 + \dfrac{R}{{100}}} \right)^2} - P$, we can write after putting the value of CI as
$
\Rightarrow {\text{CI}} = P{\left( {1 + \dfrac{R}{{100}}} \right)^2} - P \\
\Rightarrow 41 = P\left[ {{{\left( {1 + \dfrac{R}{{100}}} \right)}^2} - 1} \right] \\
$
Now, using the algebraic identity ${\left( {a + b} \right)^2} = \left( {{a^2} + 2ab + {b^2}} \right)$ to simplify it further, we get
$
\Rightarrow 41 = P\left[ {1 + \dfrac{{2R}}{{100}} + \dfrac{{{R^2}}}{{10000}} - 1} \right] \\
\Rightarrow 41 = P\left[ {\dfrac{{2R}}{{100}} + \dfrac{{{R^2}}}{{10000}}} \right] \\
\Rightarrow 41 = \dfrac{{2PR}}{{100}} + \dfrac{{P{R^2}}}{{10000}} \\
$
$ \Rightarrow 41 = \dfrac{{2PR}}{{100}} + \dfrac{{PR\left( R \right)}}{{10000}}$ – equation (1)
Now, using the formula of SI given by: ${\text{SI}} = \dfrac{{PRT}}{{100}}$, where T is the time period = 2 years, we can write
$
\Rightarrow {\text{SI}} = \dfrac{{PRT}}{{100}} \\
\Rightarrow 40 = \dfrac{{PR\left( 2 \right)}}{{100}} \\
\Rightarrow PR = \dfrac{{40\left( {100} \right)}}{2} = 2000 \\
$
Using this value of PR in equation (1), we get
$ \Rightarrow 41 = \dfrac{{2\left( {2000} \right)}}{{100}} + \dfrac{{R\left( {2000} \right)}}{{10000}}$
Simplifying this equation for the value of R, we get
$
\Rightarrow 41 = \dfrac{{40000}}{{100}} + \dfrac{R}{5} \\
\Rightarrow 41 = 40 + \dfrac{R}{5} \\
\Rightarrow 41 - 40 = \dfrac{R}{5} \\
\Rightarrow 1\left( 5 \right) = R \\
\Rightarrow R = 5\% \\
$
Hence, we get the value of the rate of interest as $5\% $.
Therefore, option (B) is correct.
Note: In this question, you may get confused while using the formulae of compound interest (CI) and simple interest (SI), since we have calculated the value of PR from SI and then substituted it in the equation obtained from the formula of CI. You may go wrong while solving for R from the equation obtained after putting PR = 2000. Such questions can be solved by direct implementation of the standard formulae related to the concepts given in the question.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


