Answer
Verified
438k+ views
Hint: Assume the number to be $x$ and then note the next numbers and then accordingly find the new average. Apply an average formula.
Complete step-by-step answer:
Let us assume the first number to be $x$. Therefore the next four consecutive numbers are $x + 1,x + 2,x + 3,x + 4$. Average is the sum of observations divided by the number of observations.
Average = Sum of Observations/ Number of Observations
Applying this concept, we get $\dfrac {{x + x + 1 + x + 2 + x + 3 + x + 4}}{5} = \dfrac {{5x + 10}}{5} = n$
Therefore $5x + 10 = 5n$ and after solving this equation we get $x = n - 2$. When we add the next two numbers, we get $5x + 10 + x + 5 + x + 6 = 7x + 21$. Therefore, the new average is $\dfrac {{7x + 21}}{7} = x + 3$. Substituting the value of $x = n - 2$, the value of the new average in terms of n is $n - 2 + 3 = n + 1$.
The previous average of numbers is $n$ and the new average is $n + 1$. So, the average increases by 1.
So, the correct option is option C.
Note: We could have easily solved the problem by assuming any five consecutive numbers but, this was only possible in this case because they have given five numbers. It would have been a big problem for us if it were fifty, hundred, two hundred or even a thousand numbers or more than that. Thus, using algebra by assuming a variable would help us greatly in this field because it would help us reduce the load of our calculations and give the answer quickly.
Complete step-by-step answer:
Let us assume the first number to be $x$. Therefore the next four consecutive numbers are $x + 1,x + 2,x + 3,x + 4$. Average is the sum of observations divided by the number of observations.
Average = Sum of Observations/ Number of Observations
Applying this concept, we get $\dfrac {{x + x + 1 + x + 2 + x + 3 + x + 4}}{5} = \dfrac {{5x + 10}}{5} = n$
Therefore $5x + 10 = 5n$ and after solving this equation we get $x = n - 2$. When we add the next two numbers, we get $5x + 10 + x + 5 + x + 6 = 7x + 21$. Therefore, the new average is $\dfrac {{7x + 21}}{7} = x + 3$. Substituting the value of $x = n - 2$, the value of the new average in terms of n is $n - 2 + 3 = n + 1$.
The previous average of numbers is $n$ and the new average is $n + 1$. So, the average increases by 1.
So, the correct option is option C.
Note: We could have easily solved the problem by assuming any five consecutive numbers but, this was only possible in this case because they have given five numbers. It would have been a big problem for us if it were fifty, hundred, two hundred or even a thousand numbers or more than that. Thus, using algebra by assuming a variable would help us greatly in this field because it would help us reduce the load of our calculations and give the answer quickly.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE