
The angle between the lines \[2x = 3y = - z\] and \[6x = - y = - 4z\] is
A) \[{90^ \circ }\]
B) \[{0^ \circ }\]
C) \[{30^ \circ }\]
D) \[{45^ \circ }\]
Answer
567.3k+ views
Hint:
Assume \[\theta \] as the angle between the lines. Then we will write the equation of the lines in standard form and the vectors parallel to the given lines are \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \]. Then the angle between two lines is equal to the angle between \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \].
Complete step by step solution:
The given lines are
\[2x = 3y = - z\] … (1)
And \[6x = - y = - 4z\] … (2)
Now, we will write the given equation of lines in standard form as:
Since, we can write 2x as \[\dfrac{x}{{\dfrac{1}{2}}}\].
Therefore, \[2x = \dfrac{x}{{\dfrac{1}{2}}}\]
And we can write 3y as \[\dfrac{y}{{\dfrac{1}{3}}}\].
Therefore, \[3y = \dfrac{y}{{\dfrac{1}{3}}}\]
Also, we can write – z as \[\dfrac{z}{{ - 1}}\].
Therefore, \[ - z = \dfrac{z}{{ - 1}}\]
Therefore, the standard form of the equation \[(1)\] is given by
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}\] … (3)
Similarly, we can write 6x as \[\dfrac{x}{{\dfrac{1}{6}}}\] .
Therefore, \[6x = \dfrac{x}{{\dfrac{1}{6}}}\]
-Y can be written as \[\dfrac{y}{{ - 1}}\]
Therefore, \[ - y = \dfrac{y}{{ - 1}}\]
And – 4z can be written as \[\dfrac{z}{{ - 4}}\]
Therefore, \[ - 4z = \dfrac{z}{{ - 4}}\]
Therefore, the standard form of the equation \[(2)\] can be written as
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{6}}} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 4}}\] … (4)
Since, the equation \[(3)\] is
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}\]
Let \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \] be vectors parallel to equations \[(3)\]and \[(4)\]respectively.
First, we will write \[\overrightarrow {{b_1}} \] . The denominator of x in equation (3) will be the coefficient of \[\mathop i\limits^ \wedge \] , the denominator of y in equation (3) will be the coefficient of \[\mathop j\limits^ \wedge \] and the denominator of x in equation (3) will be the coefficient of \[\mathop k\limits^ \wedge \]
\[ \Rightarrow \overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \] … (5)
Similarly, we can write \[\overrightarrow {{b_2}} \]
\[ \Rightarrow \overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge \] … (6)
If \[\theta \] is the angle between the given lines, then by using the following formula we can determine the value of \[\theta \].
If $\theta $ is the angle between the given lines, then
\[\cos \theta = \dfrac{{\overrightarrow {{b_1}} \cdot \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} } \right|\left| {\overrightarrow {{b_2}} } \right|}}\] … (7)
Here \[\overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \] , \[\overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge \]
And \[\left| {\overrightarrow {{b_1}} } \right|\] can be determined by squaring and adding the coefficients of \[\mathop i\limits^ \wedge \] , \[\mathop j\limits^ \wedge \] and \[\mathop k\limits^ \wedge \] and then we will take its square root
\[ \Rightarrow \left| {\overrightarrow {{b_1}} } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \] … (8)
Similarly, we can determine \[\left| {\overrightarrow {{b_2}} } \right|\]
\[ \Rightarrow \left| {\overrightarrow {{b_2}} } \right| = \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{( - 1)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} \] … (9)
Putting the value of \[\overrightarrow {{b_1}} \] , \[\overrightarrow {{b_2}} \] , \[\left| {\overrightarrow {{b_1}} } \right|\] and \[\left| {\overrightarrow {{b_2}} } \right|\] from equations (6) , (7) , (8) and (9) respectively, we have
\[ \Rightarrow \cos \theta = \dfrac{{\left( {\dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge } \right)\left( {\dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge } \right)}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} }}\]
On simplification, we get
\[ \Rightarrow \cos \theta = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{3} + \dfrac{1}{4}}}{{\sqrt {\dfrac{1}{4} + \dfrac{1}{9} + 1} \sqrt {\dfrac{1}{{36}} + 1 + \dfrac{1}{{16}}} }}\]
Now, we take LCM and simplify
\[ \Rightarrow \cos \theta = \dfrac{{\dfrac{{1 - 4 + 3}}{{12}}}}{{\sqrt {\dfrac{{9 + 4 + 36}}{{36}}} \sqrt {\dfrac{{4 + 144 + 9}}{{144}}} }}\]
On solving further, we get
\[ \Rightarrow \cos \theta = \dfrac{0}{{\sqrt {\dfrac{{49}}{{36}}} \sqrt {\dfrac{{157}}{{144}}} }}\]
So, we have
\[ \Rightarrow \cos \theta = \dfrac{0}{{\dfrac{7}{6}\sqrt {\dfrac{{157}}{{144}}} }}\]
When 0 is divided by any non-zero value, the result will always be zero.
\[ \Rightarrow \cos \theta = 0\]
Since \[\cos \theta = 0\] at \[\theta = {90^ \circ }\].
\[ \Rightarrow \theta = {90^ \circ }\]
Therefore, the angle between the lines \[2x = 3y = - z\] and \[6x = - y = - 4z\] is \[{90^ \circ }\].
Hence option A is correct.
Note:
Let the Cartesian equation of two lines be
\[\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}}\] … (a)
and \[\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}}\] … (b)
Therefore, vector parallel to line (a) is
\[{\vec m_1} = {a_1}\mathop i\limits^ \wedge + {b_1}\mathop j\limits^ \wedge + {c_1}\mathop k\limits^ \wedge \]
and vector parallel to line (b) is
\[{\vec m_2} = {a_2}\mathop i\limits^ \wedge + {b_2}\mathop j\limits^ \wedge + {c_2}\mathop k\limits^ \wedge \]
Let \[\theta \] is the angle between the lines (a) and (b). Then, \[\theta \] is also the angle between \[{\vec m_1}\] and \[{\vec m_2}\].
Therefore, \[\cos \theta = \dfrac{{\overrightarrow {{m_1}} \cdot \overrightarrow {{m_2}} }}{{\left| {\overrightarrow {{m_1}} } \right|\left| {\overrightarrow {{m_2}} } \right|}}\]
Assume \[\theta \] as the angle between the lines. Then we will write the equation of the lines in standard form and the vectors parallel to the given lines are \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \]. Then the angle between two lines is equal to the angle between \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \].
Complete step by step solution:
The given lines are
\[2x = 3y = - z\] … (1)
And \[6x = - y = - 4z\] … (2)
Now, we will write the given equation of lines in standard form as:
Since, we can write 2x as \[\dfrac{x}{{\dfrac{1}{2}}}\].
Therefore, \[2x = \dfrac{x}{{\dfrac{1}{2}}}\]
And we can write 3y as \[\dfrac{y}{{\dfrac{1}{3}}}\].
Therefore, \[3y = \dfrac{y}{{\dfrac{1}{3}}}\]
Also, we can write – z as \[\dfrac{z}{{ - 1}}\].
Therefore, \[ - z = \dfrac{z}{{ - 1}}\]
Therefore, the standard form of the equation \[(1)\] is given by
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}\] … (3)
Similarly, we can write 6x as \[\dfrac{x}{{\dfrac{1}{6}}}\] .
Therefore, \[6x = \dfrac{x}{{\dfrac{1}{6}}}\]
-Y can be written as \[\dfrac{y}{{ - 1}}\]
Therefore, \[ - y = \dfrac{y}{{ - 1}}\]
And – 4z can be written as \[\dfrac{z}{{ - 4}}\]
Therefore, \[ - 4z = \dfrac{z}{{ - 4}}\]
Therefore, the standard form of the equation \[(2)\] can be written as
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{6}}} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 4}}\] … (4)
Since, the equation \[(3)\] is
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}\]
Let \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \] be vectors parallel to equations \[(3)\]and \[(4)\]respectively.
First, we will write \[\overrightarrow {{b_1}} \] . The denominator of x in equation (3) will be the coefficient of \[\mathop i\limits^ \wedge \] , the denominator of y in equation (3) will be the coefficient of \[\mathop j\limits^ \wedge \] and the denominator of x in equation (3) will be the coefficient of \[\mathop k\limits^ \wedge \]
\[ \Rightarrow \overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \] … (5)
Similarly, we can write \[\overrightarrow {{b_2}} \]
\[ \Rightarrow \overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge \] … (6)
If \[\theta \] is the angle between the given lines, then by using the following formula we can determine the value of \[\theta \].
If $\theta $ is the angle between the given lines, then
\[\cos \theta = \dfrac{{\overrightarrow {{b_1}} \cdot \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} } \right|\left| {\overrightarrow {{b_2}} } \right|}}\] … (7)
Here \[\overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \] , \[\overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge \]
And \[\left| {\overrightarrow {{b_1}} } \right|\] can be determined by squaring and adding the coefficients of \[\mathop i\limits^ \wedge \] , \[\mathop j\limits^ \wedge \] and \[\mathop k\limits^ \wedge \] and then we will take its square root
\[ \Rightarrow \left| {\overrightarrow {{b_1}} } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \] … (8)
Similarly, we can determine \[\left| {\overrightarrow {{b_2}} } \right|\]
\[ \Rightarrow \left| {\overrightarrow {{b_2}} } \right| = \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{( - 1)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} \] … (9)
Putting the value of \[\overrightarrow {{b_1}} \] , \[\overrightarrow {{b_2}} \] , \[\left| {\overrightarrow {{b_1}} } \right|\] and \[\left| {\overrightarrow {{b_2}} } \right|\] from equations (6) , (7) , (8) and (9) respectively, we have
\[ \Rightarrow \cos \theta = \dfrac{{\left( {\dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge } \right)\left( {\dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge } \right)}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} }}\]
On simplification, we get
\[ \Rightarrow \cos \theta = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{3} + \dfrac{1}{4}}}{{\sqrt {\dfrac{1}{4} + \dfrac{1}{9} + 1} \sqrt {\dfrac{1}{{36}} + 1 + \dfrac{1}{{16}}} }}\]
Now, we take LCM and simplify
\[ \Rightarrow \cos \theta = \dfrac{{\dfrac{{1 - 4 + 3}}{{12}}}}{{\sqrt {\dfrac{{9 + 4 + 36}}{{36}}} \sqrt {\dfrac{{4 + 144 + 9}}{{144}}} }}\]
On solving further, we get
\[ \Rightarrow \cos \theta = \dfrac{0}{{\sqrt {\dfrac{{49}}{{36}}} \sqrt {\dfrac{{157}}{{144}}} }}\]
So, we have
\[ \Rightarrow \cos \theta = \dfrac{0}{{\dfrac{7}{6}\sqrt {\dfrac{{157}}{{144}}} }}\]
When 0 is divided by any non-zero value, the result will always be zero.
\[ \Rightarrow \cos \theta = 0\]
Since \[\cos \theta = 0\] at \[\theta = {90^ \circ }\].
\[ \Rightarrow \theta = {90^ \circ }\]
Therefore, the angle between the lines \[2x = 3y = - z\] and \[6x = - y = - 4z\] is \[{90^ \circ }\].
Hence option A is correct.
Note:
Let the Cartesian equation of two lines be
\[\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}}\] … (a)
and \[\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}}\] … (b)
Therefore, vector parallel to line (a) is
\[{\vec m_1} = {a_1}\mathop i\limits^ \wedge + {b_1}\mathop j\limits^ \wedge + {c_1}\mathop k\limits^ \wedge \]
and vector parallel to line (b) is
\[{\vec m_2} = {a_2}\mathop i\limits^ \wedge + {b_2}\mathop j\limits^ \wedge + {c_2}\mathop k\limits^ \wedge \]
Let \[\theta \] is the angle between the lines (a) and (b). Then, \[\theta \] is also the angle between \[{\vec m_1}\] and \[{\vec m_2}\].
Therefore, \[\cos \theta = \dfrac{{\overrightarrow {{m_1}} \cdot \overrightarrow {{m_2}} }}{{\left| {\overrightarrow {{m_1}} } \right|\left| {\overrightarrow {{m_2}} } \right|}}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

