
The angle between the lines \[2x = 3y = - z\] and \[6x = - y = - 4z\] is
A) \[{90^ \circ }\]
B) \[{0^ \circ }\]
C) \[{30^ \circ }\]
D) \[{45^ \circ }\]
Answer
581.4k+ views
Hint:
Assume \[\theta \] as the angle between the lines. Then we will write the equation of the lines in standard form and the vectors parallel to the given lines are \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \]. Then the angle between two lines is equal to the angle between \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \].
Complete step by step solution:
The given lines are
\[2x = 3y = - z\] … (1)
And \[6x = - y = - 4z\] … (2)
Now, we will write the given equation of lines in standard form as:
Since, we can write 2x as \[\dfrac{x}{{\dfrac{1}{2}}}\].
Therefore, \[2x = \dfrac{x}{{\dfrac{1}{2}}}\]
And we can write 3y as \[\dfrac{y}{{\dfrac{1}{3}}}\].
Therefore, \[3y = \dfrac{y}{{\dfrac{1}{3}}}\]
Also, we can write – z as \[\dfrac{z}{{ - 1}}\].
Therefore, \[ - z = \dfrac{z}{{ - 1}}\]
Therefore, the standard form of the equation \[(1)\] is given by
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}\] … (3)
Similarly, we can write 6x as \[\dfrac{x}{{\dfrac{1}{6}}}\] .
Therefore, \[6x = \dfrac{x}{{\dfrac{1}{6}}}\]
-Y can be written as \[\dfrac{y}{{ - 1}}\]
Therefore, \[ - y = \dfrac{y}{{ - 1}}\]
And – 4z can be written as \[\dfrac{z}{{ - 4}}\]
Therefore, \[ - 4z = \dfrac{z}{{ - 4}}\]
Therefore, the standard form of the equation \[(2)\] can be written as
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{6}}} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 4}}\] … (4)
Since, the equation \[(3)\] is
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}\]
Let \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \] be vectors parallel to equations \[(3)\]and \[(4)\]respectively.
First, we will write \[\overrightarrow {{b_1}} \] . The denominator of x in equation (3) will be the coefficient of \[\mathop i\limits^ \wedge \] , the denominator of y in equation (3) will be the coefficient of \[\mathop j\limits^ \wedge \] and the denominator of x in equation (3) will be the coefficient of \[\mathop k\limits^ \wedge \]
\[ \Rightarrow \overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \] … (5)
Similarly, we can write \[\overrightarrow {{b_2}} \]
\[ \Rightarrow \overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge \] … (6)
If \[\theta \] is the angle between the given lines, then by using the following formula we can determine the value of \[\theta \].
If $\theta $ is the angle between the given lines, then
\[\cos \theta = \dfrac{{\overrightarrow {{b_1}} \cdot \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} } \right|\left| {\overrightarrow {{b_2}} } \right|}}\] … (7)
Here \[\overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \] , \[\overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge \]
And \[\left| {\overrightarrow {{b_1}} } \right|\] can be determined by squaring and adding the coefficients of \[\mathop i\limits^ \wedge \] , \[\mathop j\limits^ \wedge \] and \[\mathop k\limits^ \wedge \] and then we will take its square root
\[ \Rightarrow \left| {\overrightarrow {{b_1}} } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \] … (8)
Similarly, we can determine \[\left| {\overrightarrow {{b_2}} } \right|\]
\[ \Rightarrow \left| {\overrightarrow {{b_2}} } \right| = \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{( - 1)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} \] … (9)
Putting the value of \[\overrightarrow {{b_1}} \] , \[\overrightarrow {{b_2}} \] , \[\left| {\overrightarrow {{b_1}} } \right|\] and \[\left| {\overrightarrow {{b_2}} } \right|\] from equations (6) , (7) , (8) and (9) respectively, we have
\[ \Rightarrow \cos \theta = \dfrac{{\left( {\dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge } \right)\left( {\dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge } \right)}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} }}\]
On simplification, we get
\[ \Rightarrow \cos \theta = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{3} + \dfrac{1}{4}}}{{\sqrt {\dfrac{1}{4} + \dfrac{1}{9} + 1} \sqrt {\dfrac{1}{{36}} + 1 + \dfrac{1}{{16}}} }}\]
Now, we take LCM and simplify
\[ \Rightarrow \cos \theta = \dfrac{{\dfrac{{1 - 4 + 3}}{{12}}}}{{\sqrt {\dfrac{{9 + 4 + 36}}{{36}}} \sqrt {\dfrac{{4 + 144 + 9}}{{144}}} }}\]
On solving further, we get
\[ \Rightarrow \cos \theta = \dfrac{0}{{\sqrt {\dfrac{{49}}{{36}}} \sqrt {\dfrac{{157}}{{144}}} }}\]
So, we have
\[ \Rightarrow \cos \theta = \dfrac{0}{{\dfrac{7}{6}\sqrt {\dfrac{{157}}{{144}}} }}\]
When 0 is divided by any non-zero value, the result will always be zero.
\[ \Rightarrow \cos \theta = 0\]
Since \[\cos \theta = 0\] at \[\theta = {90^ \circ }\].
\[ \Rightarrow \theta = {90^ \circ }\]
Therefore, the angle between the lines \[2x = 3y = - z\] and \[6x = - y = - 4z\] is \[{90^ \circ }\].
Hence option A is correct.
Note:
Let the Cartesian equation of two lines be
\[\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}}\] … (a)
and \[\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}}\] … (b)
Therefore, vector parallel to line (a) is
\[{\vec m_1} = {a_1}\mathop i\limits^ \wedge + {b_1}\mathop j\limits^ \wedge + {c_1}\mathop k\limits^ \wedge \]
and vector parallel to line (b) is
\[{\vec m_2} = {a_2}\mathop i\limits^ \wedge + {b_2}\mathop j\limits^ \wedge + {c_2}\mathop k\limits^ \wedge \]
Let \[\theta \] is the angle between the lines (a) and (b). Then, \[\theta \] is also the angle between \[{\vec m_1}\] and \[{\vec m_2}\].
Therefore, \[\cos \theta = \dfrac{{\overrightarrow {{m_1}} \cdot \overrightarrow {{m_2}} }}{{\left| {\overrightarrow {{m_1}} } \right|\left| {\overrightarrow {{m_2}} } \right|}}\]
Assume \[\theta \] as the angle between the lines. Then we will write the equation of the lines in standard form and the vectors parallel to the given lines are \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \]. Then the angle between two lines is equal to the angle between \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \].
Complete step by step solution:
The given lines are
\[2x = 3y = - z\] … (1)
And \[6x = - y = - 4z\] … (2)
Now, we will write the given equation of lines in standard form as:
Since, we can write 2x as \[\dfrac{x}{{\dfrac{1}{2}}}\].
Therefore, \[2x = \dfrac{x}{{\dfrac{1}{2}}}\]
And we can write 3y as \[\dfrac{y}{{\dfrac{1}{3}}}\].
Therefore, \[3y = \dfrac{y}{{\dfrac{1}{3}}}\]
Also, we can write – z as \[\dfrac{z}{{ - 1}}\].
Therefore, \[ - z = \dfrac{z}{{ - 1}}\]
Therefore, the standard form of the equation \[(1)\] is given by
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}\] … (3)
Similarly, we can write 6x as \[\dfrac{x}{{\dfrac{1}{6}}}\] .
Therefore, \[6x = \dfrac{x}{{\dfrac{1}{6}}}\]
-Y can be written as \[\dfrac{y}{{ - 1}}\]
Therefore, \[ - y = \dfrac{y}{{ - 1}}\]
And – 4z can be written as \[\dfrac{z}{{ - 4}}\]
Therefore, \[ - 4z = \dfrac{z}{{ - 4}}\]
Therefore, the standard form of the equation \[(2)\] can be written as
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{6}}} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 4}}\] … (4)
Since, the equation \[(3)\] is
\[ \Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}\]
Let \[\overrightarrow {{b_1}} \] and \[\overrightarrow {{b_2}} \] be vectors parallel to equations \[(3)\]and \[(4)\]respectively.
First, we will write \[\overrightarrow {{b_1}} \] . The denominator of x in equation (3) will be the coefficient of \[\mathop i\limits^ \wedge \] , the denominator of y in equation (3) will be the coefficient of \[\mathop j\limits^ \wedge \] and the denominator of x in equation (3) will be the coefficient of \[\mathop k\limits^ \wedge \]
\[ \Rightarrow \overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \] … (5)
Similarly, we can write \[\overrightarrow {{b_2}} \]
\[ \Rightarrow \overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge \] … (6)
If \[\theta \] is the angle between the given lines, then by using the following formula we can determine the value of \[\theta \].
If $\theta $ is the angle between the given lines, then
\[\cos \theta = \dfrac{{\overrightarrow {{b_1}} \cdot \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} } \right|\left| {\overrightarrow {{b_2}} } \right|}}\] … (7)
Here \[\overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge \] , \[\overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge \]
And \[\left| {\overrightarrow {{b_1}} } \right|\] can be determined by squaring and adding the coefficients of \[\mathop i\limits^ \wedge \] , \[\mathop j\limits^ \wedge \] and \[\mathop k\limits^ \wedge \] and then we will take its square root
\[ \Rightarrow \left| {\overrightarrow {{b_1}} } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \] … (8)
Similarly, we can determine \[\left| {\overrightarrow {{b_2}} } \right|\]
\[ \Rightarrow \left| {\overrightarrow {{b_2}} } \right| = \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{( - 1)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} \] … (9)
Putting the value of \[\overrightarrow {{b_1}} \] , \[\overrightarrow {{b_2}} \] , \[\left| {\overrightarrow {{b_1}} } \right|\] and \[\left| {\overrightarrow {{b_2}} } \right|\] from equations (6) , (7) , (8) and (9) respectively, we have
\[ \Rightarrow \cos \theta = \dfrac{{\left( {\dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge } \right)\left( {\dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge } \right)}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} }}\]
On simplification, we get
\[ \Rightarrow \cos \theta = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{3} + \dfrac{1}{4}}}{{\sqrt {\dfrac{1}{4} + \dfrac{1}{9} + 1} \sqrt {\dfrac{1}{{36}} + 1 + \dfrac{1}{{16}}} }}\]
Now, we take LCM and simplify
\[ \Rightarrow \cos \theta = \dfrac{{\dfrac{{1 - 4 + 3}}{{12}}}}{{\sqrt {\dfrac{{9 + 4 + 36}}{{36}}} \sqrt {\dfrac{{4 + 144 + 9}}{{144}}} }}\]
On solving further, we get
\[ \Rightarrow \cos \theta = \dfrac{0}{{\sqrt {\dfrac{{49}}{{36}}} \sqrt {\dfrac{{157}}{{144}}} }}\]
So, we have
\[ \Rightarrow \cos \theta = \dfrac{0}{{\dfrac{7}{6}\sqrt {\dfrac{{157}}{{144}}} }}\]
When 0 is divided by any non-zero value, the result will always be zero.
\[ \Rightarrow \cos \theta = 0\]
Since \[\cos \theta = 0\] at \[\theta = {90^ \circ }\].
\[ \Rightarrow \theta = {90^ \circ }\]
Therefore, the angle between the lines \[2x = 3y = - z\] and \[6x = - y = - 4z\] is \[{90^ \circ }\].
Hence option A is correct.
Note:
Let the Cartesian equation of two lines be
\[\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}}\] … (a)
and \[\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}}\] … (b)
Therefore, vector parallel to line (a) is
\[{\vec m_1} = {a_1}\mathop i\limits^ \wedge + {b_1}\mathop j\limits^ \wedge + {c_1}\mathop k\limits^ \wedge \]
and vector parallel to line (b) is
\[{\vec m_2} = {a_2}\mathop i\limits^ \wedge + {b_2}\mathop j\limits^ \wedge + {c_2}\mathop k\limits^ \wedge \]
Let \[\theta \] is the angle between the lines (a) and (b). Then, \[\theta \] is also the angle between \[{\vec m_1}\] and \[{\vec m_2}\].
Therefore, \[\cos \theta = \dfrac{{\overrightarrow {{m_1}} \cdot \overrightarrow {{m_2}} }}{{\left| {\overrightarrow {{m_1}} } \right|\left| {\overrightarrow {{m_2}} } \right|}}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

