
Text for question can start here.
This can have multiple lines. In fig., AD is the median of the triangle ABC and AM \[\bot \]BC. Prove that
(1) \[A{{C}^{2}}=A{{D}^{2}}+BC.DM+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
(2) \[A{{B}^{2}}=A{{D}^{2}}-BC.DM+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
(3) \[A{{B}^{2}}+A{{C}^{2}}=2A{{D}^{2}}+\dfrac{B{{C}^{2}}}{2}\]
Answer
612k+ views
Hint: Consider MD = x. Then BM=BC/2-x and use Pythagoras theorem to the right-angled triangles AMB and AMC. Since, AD is the median\[\Rightarrow \] BD = \[\dfrac{BC}{2}\], CD = \[\dfrac{BC}{2}\]
Complete step-by-step answer:
We are given the triangle ABC in which AD is the median and AM \[\bot \]BC . Since, AD is the median, BD = \[\dfrac{BC}{2}\] and CD = \[\dfrac{BC}{2}\] .
Now, let’s assume MD = x units.
\[\Rightarrow BM=\dfrac{BC}{2}-x\] and $CM=\dfrac{BC}{2}+x$
Now, we are given that AM \[\bot \]BC. So, $\angle AMB={{90}^{o}}$ . So, $\Delta AMB$ is a right-angled triangle. So, we can apply Pythagoras theorem in $\Delta AMB$ . But before applying Pythagoras theorem, we should understand what Pythagoras theorem is. The Pythagoras theorem states that “In a right-angled triangle, the sum of squares of the perpendicular sides is equal to the square of the third side, or the hypotenuse.”
So, in $\Delta AMB$ ,
\[A{{M}^{2}}+B{{M}^{2}}=A{{B}^{2}}\]
\[\Rightarrow A{{M}^{2}}+{{\left( \dfrac{BC}{2}-x \right)}^{2}}=A{{B}^{2}}\] \[......(1)\]
Now, in $\Delta AMC$ , $\angle AMC={{90}^{o}}$. So, $\Delta AMC$ is a right-angled triangle. So, we can apply Pythagoras theorem in $\Delta AMC$ .
So, in $\Delta AMC$ ,
\[A{{M}^{2}}+C{{M}^{2}}=A{{B}^{2}}\]
\[\Rightarrow A{{M}^{2}}+{{\left( \dfrac{BC}{2}+x \right)}^{2}}=A{{C}^{2}}\] \[......(2)\]
Now, we will subtract equation 1 from equation 2. So, we get:
\[{{\left( \dfrac{BC}{2}+x \right)}^{2}}-{{\left( \dfrac{BC}{2}-x \right)}^{2}}=A{{C}^{2}}-A{{B}^{2}}\]
$\Rightarrow \dfrac{B{{C}^{2}}}{4}+BC\times x+{{x}^{2}}-\left( \dfrac{B{{C}^{2}}}{4}-BC\times x+{{x}^{2}} \right)=A{{C}^{2}}-A{{B}^{2}}$
$\Rightarrow \dfrac{B{{C}^{2}}}{4}+BC\times x+{{x}^{2}}-\dfrac{B{{C}^{2}}}{4}+BC\times x-{{x}^{2}}=A{{C}^{2}}-A{{B}^{2}}$
$\Rightarrow 2BC\times x=A{{C}^{2}}-A{{B}^{2}}$
We had assumed DM = x.
\[\Rightarrow 2.\left( BC \right).DM+A{{B}^{2}}=A{{C}^{2}}\]\[...(3)\]
Now, consider the triangle AMD . We have $\angle AMD={{90}^{o}}$ . So, $\Delta AMD$ is a right-angled triangle. So, we can apply Pythagoras theorem. On applying Pythagoras theorem, we get:
\[A{{M}^{2}}+{{x}^{2}}=A{{D}^{2}}\]
From equation 2:
\[A{{M}^{2}}+{{\left( \dfrac{BC}{2}+x \right)}^{2}}=A{{C}^{2}}\]
\[\Rightarrow A{{D}^{2}}-{{x}^{2}}+{{\left( \dfrac{BC}{2}+x \right)}^{2}}=A{{C}^{2}}\]
\[\Rightarrow A{{C}^{2}}=A{{D}^{2}}+BC.x+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
\[\Rightarrow A{{C}^{2}}=A{{D}^{2}}+BC.DM+{{\left( \dfrac{BC}{2} \right)}^{2}}........(4)\]
Hence, (i) is proved.
Now, from equation 3:
\[A{{C}^{2}}=A{{D}^{^{2}}}+\dfrac{A{{C}^{2}}-A{{B}^{2}}}{2}+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
\[\Rightarrow A{{C}^{2}}-\dfrac{A{{C}^{2}}-A{{B}^{2}}}{2}=A{{D}^{^{2}}}+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
\[\Rightarrow \dfrac{A{{C}^{2}}+A{{B}^{2}}}{2}=A{{D}^{^{2}}}+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
\[\Rightarrow A{{C}^{2}}+A{{B}^{2}}=2A{{D}^{^{2}}}+\dfrac{B{{C}^{2}}}{2}........(5)\]
Hence, (iii) is proved.
On subtracting equation (4) from equation (5), we get:
\[A{{C}^{2}}+A{{B}^{2}}-A{{C}^{2}}=2A{{D}^{^{2}}}+\dfrac{B{{C}^{2}}}{2}-\left( A{{D}^{2}}+BC.DM+{{\left( \dfrac{BC}{2} \right)}^{2}} \right)\]
$\Rightarrow A{{B}^{2}}=2A{{D}^{^{2}}}+\dfrac{B{{C}^{2}}}{2}-A{{D}^{2}}-BC.DM-{{\left( \dfrac{BC}{2} \right)}^{2}}$
\[\Rightarrow \]\[A{{B}^{2}}=A{{D}^{2}}-BC.DM+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
Hence, (ii) is proved.
NOTE: While calculating, be careful about the signs. Sign mistakes are very common and can result in wrong answers. So, students should be very careful while calculating and while making substitutions.
Complete step-by-step answer:
We are given the triangle ABC in which AD is the median and AM \[\bot \]BC . Since, AD is the median, BD = \[\dfrac{BC}{2}\] and CD = \[\dfrac{BC}{2}\] .
Now, let’s assume MD = x units.
\[\Rightarrow BM=\dfrac{BC}{2}-x\] and $CM=\dfrac{BC}{2}+x$
Now, we are given that AM \[\bot \]BC. So, $\angle AMB={{90}^{o}}$ . So, $\Delta AMB$ is a right-angled triangle. So, we can apply Pythagoras theorem in $\Delta AMB$ . But before applying Pythagoras theorem, we should understand what Pythagoras theorem is. The Pythagoras theorem states that “In a right-angled triangle, the sum of squares of the perpendicular sides is equal to the square of the third side, or the hypotenuse.”
So, in $\Delta AMB$ ,
\[A{{M}^{2}}+B{{M}^{2}}=A{{B}^{2}}\]
\[\Rightarrow A{{M}^{2}}+{{\left( \dfrac{BC}{2}-x \right)}^{2}}=A{{B}^{2}}\] \[......(1)\]
Now, in $\Delta AMC$ , $\angle AMC={{90}^{o}}$. So, $\Delta AMC$ is a right-angled triangle. So, we can apply Pythagoras theorem in $\Delta AMC$ .
So, in $\Delta AMC$ ,
\[A{{M}^{2}}+C{{M}^{2}}=A{{B}^{2}}\]
\[\Rightarrow A{{M}^{2}}+{{\left( \dfrac{BC}{2}+x \right)}^{2}}=A{{C}^{2}}\] \[......(2)\]
Now, we will subtract equation 1 from equation 2. So, we get:
\[{{\left( \dfrac{BC}{2}+x \right)}^{2}}-{{\left( \dfrac{BC}{2}-x \right)}^{2}}=A{{C}^{2}}-A{{B}^{2}}\]
$\Rightarrow \dfrac{B{{C}^{2}}}{4}+BC\times x+{{x}^{2}}-\left( \dfrac{B{{C}^{2}}}{4}-BC\times x+{{x}^{2}} \right)=A{{C}^{2}}-A{{B}^{2}}$
$\Rightarrow \dfrac{B{{C}^{2}}}{4}+BC\times x+{{x}^{2}}-\dfrac{B{{C}^{2}}}{4}+BC\times x-{{x}^{2}}=A{{C}^{2}}-A{{B}^{2}}$
$\Rightarrow 2BC\times x=A{{C}^{2}}-A{{B}^{2}}$
We had assumed DM = x.
\[\Rightarrow 2.\left( BC \right).DM+A{{B}^{2}}=A{{C}^{2}}\]\[...(3)\]
Now, consider the triangle AMD . We have $\angle AMD={{90}^{o}}$ . So, $\Delta AMD$ is a right-angled triangle. So, we can apply Pythagoras theorem. On applying Pythagoras theorem, we get:
\[A{{M}^{2}}+{{x}^{2}}=A{{D}^{2}}\]
From equation 2:
\[A{{M}^{2}}+{{\left( \dfrac{BC}{2}+x \right)}^{2}}=A{{C}^{2}}\]
\[\Rightarrow A{{D}^{2}}-{{x}^{2}}+{{\left( \dfrac{BC}{2}+x \right)}^{2}}=A{{C}^{2}}\]
\[\Rightarrow A{{C}^{2}}=A{{D}^{2}}+BC.x+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
\[\Rightarrow A{{C}^{2}}=A{{D}^{2}}+BC.DM+{{\left( \dfrac{BC}{2} \right)}^{2}}........(4)\]
Hence, (i) is proved.
Now, from equation 3:
\[A{{C}^{2}}=A{{D}^{^{2}}}+\dfrac{A{{C}^{2}}-A{{B}^{2}}}{2}+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
\[\Rightarrow A{{C}^{2}}-\dfrac{A{{C}^{2}}-A{{B}^{2}}}{2}=A{{D}^{^{2}}}+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
\[\Rightarrow \dfrac{A{{C}^{2}}+A{{B}^{2}}}{2}=A{{D}^{^{2}}}+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
\[\Rightarrow A{{C}^{2}}+A{{B}^{2}}=2A{{D}^{^{2}}}+\dfrac{B{{C}^{2}}}{2}........(5)\]
Hence, (iii) is proved.
On subtracting equation (4) from equation (5), we get:
\[A{{C}^{2}}+A{{B}^{2}}-A{{C}^{2}}=2A{{D}^{^{2}}}+\dfrac{B{{C}^{2}}}{2}-\left( A{{D}^{2}}+BC.DM+{{\left( \dfrac{BC}{2} \right)}^{2}} \right)\]
$\Rightarrow A{{B}^{2}}=2A{{D}^{^{2}}}+\dfrac{B{{C}^{2}}}{2}-A{{D}^{2}}-BC.DM-{{\left( \dfrac{BC}{2} \right)}^{2}}$
\[\Rightarrow \]\[A{{B}^{2}}=A{{D}^{2}}-BC.DM+{{\left( \dfrac{BC}{2} \right)}^{2}}\]
Hence, (ii) is proved.
NOTE: While calculating, be careful about the signs. Sign mistakes are very common and can result in wrong answers. So, students should be very careful while calculating and while making substitutions.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

Define development

The winter rain in Chennai is caused by A SouthWest class 9 social science CBSE

Give 5 examples of refraction of light in daily life

The voting age has been reduced from 21 to 18 by the class 9 social science CBSE

