
Tangents are drawn from any point on the hyperbola $\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1$ to the circle ${{x}^{2}}+{{y}^{2}}=9$. Find the locus of midpoint of the chord of contact.
Answer
556.5k+ views
Hint: First, assume any point on the hyperbola to the circle. Then, the chord of contact of the circle concerning the point. After that find the equation of chord in mid-point form. Now equate both the equations to get the value of $\sec \theta $ and $\tan \theta $. As we know ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$, substitute the values in it and simplify. The equation derived is the locus of midpoint of the chord of contact.
Complete step-by-step solution:
Given: - Equation of the hyperbola is $\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1$.
The equation of the circle is ${{x}^{2}}+{{y}^{2}}=9$.
Let any point on the hyperbola to the circle be \[\left( 3\sec \theta ,2\tan \theta \right)\] and the midpoint of the chord of contact be $\left( {{x}_{1}},{{y}_{1}} \right)$.
Then, the chord of contact of the circle concerning the point \[\left( 3\sec \theta ,2\tan \theta \right)\] is,
$\left( 3\sec \theta \right)x+\left( 2\tan \theta \right)y=9$...............….. (1)
Now, the equation of chord in mid-point form is
$x{{x}_{1}}+y{{y}_{1}}={{x}_{1}}^{2}+{{y}_{1}}^{2}$.................….. (2)
Since both the equation (1) and (2) represent the same line.
As we know that for unique or many solutions,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$
Then from equation (1) and (2),
$\Rightarrow$$\dfrac{3\sec\theta}{{{x}_{1}}}=\dfrac{2\tan\theta}{{{y}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Now, take the first and last term to find the value of $\sec \theta $,
$\Rightarrow$$\dfrac{3\sec \theta }{{{x}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Multiply the denominator of the left side to the numerator of the right side,
$\Rightarrow$$3\sec \theta =\dfrac{9{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Divide both sides by 3,
$\Rightarrow$$\sec \theta =\dfrac{3{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Now, take the second and last term to find the value of $\tan \theta $,
$\Rightarrow$$\dfrac{2\tan \theta }{{{y}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Multiply the denominator of the left side to the numerator of the right side,
$\Rightarrow$$2\tan \theta =\dfrac{9{{y}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Divide both sides by 2,
$\Rightarrow$$\tan \theta =\dfrac{9{{y}_{1}}}{2\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}$
As we know, ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$.
Substitute the values of $\sec \theta $ and $\tan \theta $ from above,
$\Rightarrow$${{\left( \dfrac{3{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}} \right)}^{2}}-{{\left[ \dfrac{9{{y}_{1}}}{2\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)} \right]}^{2}}=1$
Square the terms,
$\Rightarrow$$\dfrac{9{{x}_{1}}^{2}}{{{\left({{x}_{1}}^{2}+{{y}_{1}}^{2}\right)}^{2}}}-\dfrac{81{{y}_{1}}^{2}}{4{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}=1$
Take ${{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}$ common from the denominator,
$\Rightarrow$$\dfrac{1}{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}\left[ 9{{x}_{1}}^{2}-\dfrac{81{{y}_{1}}^{2}}{4} \right]=1$
Divide both sides by $\dfrac{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}{81}$,
$\Rightarrow$$\dfrac{9{{x}_{1}}^{2}}{81}-\dfrac{81{{y}_{1}}^{2}}{4\times 81}=\dfrac{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}{81}$
Cancel out the common factors from numerator and denominator,
$\Rightarrow$$\dfrac{{{x}_{1}}^{2}}{9}-\dfrac{{{y}_{1}}^{2}}{4}={{\left( \dfrac{{{x}_{1}}^{2}+{{y}_{1}}^{2}}{9} \right)}^{2}}$
Hence, the locus of midpoint of the chord of contact is $\dfrac{{{x}_{1}}^{2}}{9}-\dfrac{{{y}_{1}}^{2}}{4}={{\left( \dfrac{{{x}_{1}}^{2}+{{y}_{1}}^{2}}{9} \right)}^{2}}$.
Note: A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone; the hyperbola will be symmetrical in any case.
The standard form of the equation of the hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
Complete step-by-step solution:
Given: - Equation of the hyperbola is $\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{4}=1$.
The equation of the circle is ${{x}^{2}}+{{y}^{2}}=9$.
Let any point on the hyperbola to the circle be \[\left( 3\sec \theta ,2\tan \theta \right)\] and the midpoint of the chord of contact be $\left( {{x}_{1}},{{y}_{1}} \right)$.
Then, the chord of contact of the circle concerning the point \[\left( 3\sec \theta ,2\tan \theta \right)\] is,
$\left( 3\sec \theta \right)x+\left( 2\tan \theta \right)y=9$...............….. (1)
Now, the equation of chord in mid-point form is
$x{{x}_{1}}+y{{y}_{1}}={{x}_{1}}^{2}+{{y}_{1}}^{2}$.................….. (2)
Since both the equation (1) and (2) represent the same line.
As we know that for unique or many solutions,
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$
Then from equation (1) and (2),
$\Rightarrow$$\dfrac{3\sec\theta}{{{x}_{1}}}=\dfrac{2\tan\theta}{{{y}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Now, take the first and last term to find the value of $\sec \theta $,
$\Rightarrow$$\dfrac{3\sec \theta }{{{x}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Multiply the denominator of the left side to the numerator of the right side,
$\Rightarrow$$3\sec \theta =\dfrac{9{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Divide both sides by 3,
$\Rightarrow$$\sec \theta =\dfrac{3{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Now, take the second and last term to find the value of $\tan \theta $,
$\Rightarrow$$\dfrac{2\tan \theta }{{{y}_{1}}}=\dfrac{9}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Multiply the denominator of the left side to the numerator of the right side,
$\Rightarrow$$2\tan \theta =\dfrac{9{{y}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$
Divide both sides by 2,
$\Rightarrow$$\tan \theta =\dfrac{9{{y}_{1}}}{2\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}$
As we know, ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$.
Substitute the values of $\sec \theta $ and $\tan \theta $ from above,
$\Rightarrow$${{\left( \dfrac{3{{x}_{1}}}{{{x}_{1}}^{2}+{{y}_{1}}^{2}} \right)}^{2}}-{{\left[ \dfrac{9{{y}_{1}}}{2\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)} \right]}^{2}}=1$
Square the terms,
$\Rightarrow$$\dfrac{9{{x}_{1}}^{2}}{{{\left({{x}_{1}}^{2}+{{y}_{1}}^{2}\right)}^{2}}}-\dfrac{81{{y}_{1}}^{2}}{4{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}=1$
Take ${{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}$ common from the denominator,
$\Rightarrow$$\dfrac{1}{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}\left[ 9{{x}_{1}}^{2}-\dfrac{81{{y}_{1}}^{2}}{4} \right]=1$
Divide both sides by $\dfrac{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}{81}$,
$\Rightarrow$$\dfrac{9{{x}_{1}}^{2}}{81}-\dfrac{81{{y}_{1}}^{2}}{4\times 81}=\dfrac{{{\left( {{x}_{1}}^{2}+{{y}_{1}}^{2} \right)}^{2}}}{81}$
Cancel out the common factors from numerator and denominator,
$\Rightarrow$$\dfrac{{{x}_{1}}^{2}}{9}-\dfrac{{{y}_{1}}^{2}}{4}={{\left( \dfrac{{{x}_{1}}^{2}+{{y}_{1}}^{2}}{9} \right)}^{2}}$
Hence, the locus of midpoint of the chord of contact is $\dfrac{{{x}_{1}}^{2}}{9}-\dfrac{{{y}_{1}}^{2}}{4}={{\left( \dfrac{{{x}_{1}}^{2}+{{y}_{1}}^{2}}{9} \right)}^{2}}$.
Note: A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone; the hyperbola will be symmetrical in any case.
The standard form of the equation of the hyperbola is $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

