
Suppose \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\]. Then determine the function \[f\left( x \right)\].
Answer
562.5k+ views
Hint: In this question, we will first evaluate the integral \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\], for that we will split the integral into \[\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx\]. Then we will not evaluate the value of the integral \[\int {{e}^{x}}\tan x\sec xdx\] rather we will evaluate \[\int {{e}^{x}}\sec xdx\] and we will see that it can be expressed in the form of \[\int {{e}^{x}}\tan x\sec xdx\]. We will then add both the value of the integrals and write it in the form of \[{{e}^{x}}f\left( x \right)+c\]. Then by equating both the values of the integral we will determine the function \[f\left( x \right)\].
Complete step by step answer:
We are given that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\].
Let \[I\] denote the integral \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\].
That is, let \[I=\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\].
Now on splitting the above integrals, we will have
\[I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx\]
Let us suppose that the integral \[\int {{e}^{x}}\tan x\sec xdx\] is denoted by \[{{I}_{1}}\] and the integral \[\int {{e}^{x}}\sec xdx\] is denoted by \[{{I}_{2}}\].
That is, we have
\[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\] and
\[{{I}_{2}}=\int {{e}^{x}}\sec xdx\]
Since we know that by integration by parts we have \[\int{\left( uv \right)dx=u\int{vdx-\int{\dfrac{d}{dx}\left( u \right)\int{vdx}}}}\]
We will now evaluate the integral \[{{I}_{2}}=\int {{e}^{x}}\sec xdx\] by using integration by parts.
Suppose \[u=\sec x\] and \[v={{e}^{x}}\], then we have
\[\begin{align}
& {{I}_{2}}=\int {{e}^{x}}\sec xdx \\
& =\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}}
\end{align}\]
Now since \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\], therefore the above integral becomes
\[\begin{align}
& {{I}_{2}}=\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}} \\
& =\sec x\left( {{e}^{x}} \right)-\int{\sec x\tan x{{e}^{x}}dx} \\
& ={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c
\end{align}\]
We also have the integral \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\], hence using the value of \[{{I}_{1}}\] in the above integral, we have
\[\begin{align}
& {{I}_{2}}={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c \\
& ={{e}^{x}}\sec x-{{I}_{1}}+c
\end{align}\]
Now substituting the value of integral \[{{I}_{1}}\] and \[{{I}_{2}}\] in integral \[I\], we get
\[\begin{align}
& I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx \\
& ={{I}_{1}}+{{I}_{2}} \\
& ={{I}_{1}}+{{e}^{x}}\sec x-{{I}_{1}}+c \\
& ={{e}^{x}}\sec x+c..............(1)
\end{align}\]
We are also given that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\].
That is \[I={{e}^{x}}f\left( x \right)+c.............(2)\].
On equating equation (1) and (2), we get
\[{{e}^{x}}f\left( x \right)+c={{e}^{x}}\sec x+c\]
\[\therefore f\left( x \right)=\sec x\]
Hence we get that the function \[f\left( x \right)\] such that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\] is equals to \[\sec x\].
Note:
In this problem, while evaluating the integrals please do not try to expand the integral \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\], otherwise complications of the problem will increase. Moreover keep in mind the fact that \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\] and use it in order to simplify the evaluation of the integrals.
Complete step by step answer:
We are given that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\].
Let \[I\] denote the integral \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\].
That is, let \[I=\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx\].
Now on splitting the above integrals, we will have
\[I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx\]
Let us suppose that the integral \[\int {{e}^{x}}\tan x\sec xdx\] is denoted by \[{{I}_{1}}\] and the integral \[\int {{e}^{x}}\sec xdx\] is denoted by \[{{I}_{2}}\].
That is, we have
\[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\] and
\[{{I}_{2}}=\int {{e}^{x}}\sec xdx\]
Since we know that by integration by parts we have \[\int{\left( uv \right)dx=u\int{vdx-\int{\dfrac{d}{dx}\left( u \right)\int{vdx}}}}\]
We will now evaluate the integral \[{{I}_{2}}=\int {{e}^{x}}\sec xdx\] by using integration by parts.
Suppose \[u=\sec x\] and \[v={{e}^{x}}\], then we have
\[\begin{align}
& {{I}_{2}}=\int {{e}^{x}}\sec xdx \\
& =\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}}
\end{align}\]
Now since \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\], therefore the above integral becomes
\[\begin{align}
& {{I}_{2}}=\sec x\int{{{e}^{x}}dx-\int{\dfrac{d}{dx}\left( \sec x \right)\int{{{e}^{x}}dx}}} \\
& =\sec x\left( {{e}^{x}} \right)-\int{\sec x\tan x{{e}^{x}}dx} \\
& ={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c
\end{align}\]
We also have the integral \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\], hence using the value of \[{{I}_{1}}\] in the above integral, we have
\[\begin{align}
& {{I}_{2}}={{e}^{x}}\sec x-\int{{{e}^{x}}\sec x\tan x{{e}^{x}}dx}+c \\
& ={{e}^{x}}\sec x-{{I}_{1}}+c
\end{align}\]
Now substituting the value of integral \[{{I}_{1}}\] and \[{{I}_{2}}\] in integral \[I\], we get
\[\begin{align}
& I=\int {{e}^{x}}\tan x\sec xdx+\int {{e}^{x}}\sec xdx \\
& ={{I}_{1}}+{{I}_{2}} \\
& ={{I}_{1}}+{{e}^{x}}\sec x-{{I}_{1}}+c \\
& ={{e}^{x}}\sec x+c..............(1)
\end{align}\]
We are also given that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\].
That is \[I={{e}^{x}}f\left( x \right)+c.............(2)\].
On equating equation (1) and (2), we get
\[{{e}^{x}}f\left( x \right)+c={{e}^{x}}\sec x+c\]
\[\therefore f\left( x \right)=\sec x\]
Hence we get that the function \[f\left( x \right)\] such that \[\int {{e}^{x}}\left( \tan x+1 \right)\sec xdx={{e}^{x}}f\left( x \right)+c\] is equals to \[\sec x\].
Note:
In this problem, while evaluating the integrals please do not try to expand the integral \[{{I}_{1}}=\int {{e}^{x}}\tan x\sec xdx\], otherwise complications of the problem will increase. Moreover keep in mind the fact that \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x\] and use it in order to simplify the evaluation of the integrals.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

