
Summation of series (method of differences), when we use \[\sum\limits_{{}}^{{}}{f\left( r \right)-f\left( r+1 \right)}\], how can we know it is \[f\left( 1 \right)-f\left( n+1 \right)\]but not \[f\left( n \right)-f\left( 1+1 \right)\]? Also, how can we know it is \[f\left( n+1 \right)-f\left( 1 \right)\], but not \[f\left( 1+1 \right)-f\left( n \right)\] when we use \[\sum\limits_{{}}^{{}}{f\left( r+1 \right)-f\left( r \right)}\]?
Answer
543.6k+ views
Hint: In order to solve the given question, we need to apply the summation of \[\sum\limits_{{}}^{{}}{f\left( r \right)-f\left( r+1 \right)}\]and simplified it to get the required answer. Here we substitute r = 1, 2, 3, 4, ………., n-1, n. Similarly, again we need to apply the summation of \[\sum\limits_{{}}^{{}}{f\left( r+1 \right)-f\left( r \right)}\] and simplifies it further, we will get the required answer.
Complete step by step solution:
We know that,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r \right)-f\left( r+1 \right) \right)}\]
Now, we substitute r = 1, 2, 3, 4, ………., n-1, n
We get,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r \right)-f\left( r+1 \right) \right)}=\left( f\left( 1 \right)-f\left( 2 \right) \right)+\left( f\left( 2 \right)-f\left( 3 \right) \right)+\left( f\left( 3 \right)-f\left( 4 \right) \right)+........+\left( f\left( n-1 \right)-f\left( n \right) \right)+\left( f\left( n \right)-f\left( n+1 \right) \right)\]Simplifying the above, we get
All the terms cancels out except f(1) and f(n+1).
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r \right)-f\left( r+1 \right) \right)}=f\left( 1 \right)-f\left( n+1 \right)\]
Therefore, Summation of series (method of differences), when we use \[\sum\limits_{{}}^{{}}{f\left( r \right)-f\left( r+1 \right)}\] is always equal to\[f\left( 1 \right)-f\left( n+1 \right)\].
Similarly,
We know that,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r+1 \right)-f\left( r \right) \right)}\]
Now, we substitute r = 1, 2, 3, 4, ………., n-1, n
We get,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r+1 \right)-f\left( r \right) \right)}=\left( f\left( 2 \right)-f\left( 1 \right) \right)+\left( f\left( 3 \right)-f\left( 2 \right) \right)+\left( f\left( 4 \right)-f\left( 3 \right) \right)+........+\left( f\left( n \right)-f\left( n-1 \right) \right)+\left( f\left( n+1 \right)-f\left( n \right) \right)\]Simplifying the above, we get
All the terms cancels out each other except f(1) and f(n+1).
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r+1 \right)-f\left( r \right) \right)}=-f\left( 1 \right)+f\left( n+1 \right)\]
We can also rewrite it as,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r+1 \right)-f\left( r \right) \right)}=f\left( n+1 \right)-f\left( 1 \right)\]
Therefore, Summation of series (method of differences), when we use \[\sum\limits_{{}}^{{}}{f\left( r+1 \right)-f\left( r \right)}\] is always equal to\[f\left( n+1 \right)-f\left( 1 \right)\].
Note: Whenever we get these types of questions, students should always remember the concept of summation of series and a way we solve the summation of series. Students should carefully write all the numbers very explicitly as there are always high chances of mistakes in the calculation part. Always observe the negative and positive sign of a number very keenly to avoid making errors.
Complete step by step solution:
We know that,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r \right)-f\left( r+1 \right) \right)}\]
Now, we substitute r = 1, 2, 3, 4, ………., n-1, n
We get,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r \right)-f\left( r+1 \right) \right)}=\left( f\left( 1 \right)-f\left( 2 \right) \right)+\left( f\left( 2 \right)-f\left( 3 \right) \right)+\left( f\left( 3 \right)-f\left( 4 \right) \right)+........+\left( f\left( n-1 \right)-f\left( n \right) \right)+\left( f\left( n \right)-f\left( n+1 \right) \right)\]Simplifying the above, we get
All the terms cancels out except f(1) and f(n+1).
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r \right)-f\left( r+1 \right) \right)}=f\left( 1 \right)-f\left( n+1 \right)\]
Therefore, Summation of series (method of differences), when we use \[\sum\limits_{{}}^{{}}{f\left( r \right)-f\left( r+1 \right)}\] is always equal to\[f\left( 1 \right)-f\left( n+1 \right)\].
Similarly,
We know that,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r+1 \right)-f\left( r \right) \right)}\]
Now, we substitute r = 1, 2, 3, 4, ………., n-1, n
We get,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r+1 \right)-f\left( r \right) \right)}=\left( f\left( 2 \right)-f\left( 1 \right) \right)+\left( f\left( 3 \right)-f\left( 2 \right) \right)+\left( f\left( 4 \right)-f\left( 3 \right) \right)+........+\left( f\left( n \right)-f\left( n-1 \right) \right)+\left( f\left( n+1 \right)-f\left( n \right) \right)\]Simplifying the above, we get
All the terms cancels out each other except f(1) and f(n+1).
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r+1 \right)-f\left( r \right) \right)}=-f\left( 1 \right)+f\left( n+1 \right)\]
We can also rewrite it as,
\[\Rightarrow S=\sum\limits_{r=1}^{n}{\left( f\left( r+1 \right)-f\left( r \right) \right)}=f\left( n+1 \right)-f\left( 1 \right)\]
Therefore, Summation of series (method of differences), when we use \[\sum\limits_{{}}^{{}}{f\left( r+1 \right)-f\left( r \right)}\] is always equal to\[f\left( n+1 \right)-f\left( 1 \right)\].
Note: Whenever we get these types of questions, students should always remember the concept of summation of series and a way we solve the summation of series. Students should carefully write all the numbers very explicitly as there are always high chances of mistakes in the calculation part. Always observe the negative and positive sign of a number very keenly to avoid making errors.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

