
Statement 1: The temperature dependence of the resistance is usually given as $ R = {R_0}\left( {1 + \alpha \Delta T} \right) $. The resistance of a wire changes from $ 100\Omega $ to $ 150\Omega $ when its temperature is increased from $ {27^ \circ }C $ to $ {227^ \circ }C $. This implies that $ \alpha = 2.5 \times {10^{ - 3}}{/^ \circ }C $ .
Statement 2: $ R = {R_0}\left( {1 + \alpha \Delta T} \right) $ is valid only when the change in the temperature $ \Delta T $ is small and $ \Delta R = \left( {R - {R_0}} \right) < < {R_0} $ .
(A) Statement 1 is True, Statement 2 is False.
(B) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1.
(C) Statement 1 is True, Statement 2 is True; Statement 2 is not the correct explanation for Statement 1.
(D) Statement 1 is False, Statement 2 is True.
Answer
559.2k+ views
Hint As temperature increases of a wire, it’s resistance also increases. We are having a relation given for change in resistance with respect to temperature. So we can get a solution using this equation.
Complete step by step answer
The temperature dependence of the resistance in the question is given as
$ \Rightarrow R = {R_0}\left( {1 + \alpha \Delta T} \right) $
Now, according to the question, we have $ {R_0} = 100\Omega $, $ R = 150\Omega $, $ {T_0} = {27^ \circ }C $, and $ T = {227^ \circ }C $ .
So, $ \Delta T = T - {T_0} $
$ \Rightarrow \Delta T = {227^ \circ }C - {27^ \circ }C = {200^ \circ }C $
Putting these values in (1) we get
$ \Rightarrow 150 = 100\left( {1 + 200\alpha } \right) $
$ \Rightarrow 200\alpha = 0.5 $
On solving we get
$ \Rightarrow \alpha = 2.5 \times {10^{ - 4}}{/^ \circ }C $
This value matches with the value given in the Statement 1.
But while deriving the expression for the variation of the resistance with the temperature, it is assumed that the change in temperature is very small. But in this case, the change in temperature is
$ \Rightarrow \Delta T = {200^ \circ }C $
This is a quite large value.
Also, while the derivation of the equation (1) is carried out, it is assumed that the change in resistance is very small compared to the original value, that is
$ \Rightarrow \left( {R - {R_0}} \right) < < {R_0} $
But in this case the change in resistance
$ \Rightarrow \left( {R - {R_0}} \right) = 150 - 100 $
$ \Rightarrow \left( {R - {R_0}} \right) = 50\Omega $
Which is comparable to the original value of resistance. So the above equation (1) cannot be applied to this case. Thus the value of $ \alpha $ which is obtained above is incorrect.
Thus the Statement 1 is False.
Also the Statement 2 is True at the same time due to the reasons already stated above.
Hence the correct answer is option D.
Note
Do not blindly jump to the conclusion that Statement 1 is correct after getting the value of $ \alpha $ same as that given in the Statement. That value is intentionally given to be the same. The question basically wants to judge the knowledge of the concept mentioned in the Statement 2.
Complete step by step answer
The temperature dependence of the resistance in the question is given as
$ \Rightarrow R = {R_0}\left( {1 + \alpha \Delta T} \right) $
Now, according to the question, we have $ {R_0} = 100\Omega $, $ R = 150\Omega $, $ {T_0} = {27^ \circ }C $, and $ T = {227^ \circ }C $ .
So, $ \Delta T = T - {T_0} $
$ \Rightarrow \Delta T = {227^ \circ }C - {27^ \circ }C = {200^ \circ }C $
Putting these values in (1) we get
$ \Rightarrow 150 = 100\left( {1 + 200\alpha } \right) $
$ \Rightarrow 200\alpha = 0.5 $
On solving we get
$ \Rightarrow \alpha = 2.5 \times {10^{ - 4}}{/^ \circ }C $
This value matches with the value given in the Statement 1.
But while deriving the expression for the variation of the resistance with the temperature, it is assumed that the change in temperature is very small. But in this case, the change in temperature is
$ \Rightarrow \Delta T = {200^ \circ }C $
This is a quite large value.
Also, while the derivation of the equation (1) is carried out, it is assumed that the change in resistance is very small compared to the original value, that is
$ \Rightarrow \left( {R - {R_0}} \right) < < {R_0} $
But in this case the change in resistance
$ \Rightarrow \left( {R - {R_0}} \right) = 150 - 100 $
$ \Rightarrow \left( {R - {R_0}} \right) = 50\Omega $
Which is comparable to the original value of resistance. So the above equation (1) cannot be applied to this case. Thus the value of $ \alpha $ which is obtained above is incorrect.
Thus the Statement 1 is False.
Also the Statement 2 is True at the same time due to the reasons already stated above.
Hence the correct answer is option D.
Note
Do not blindly jump to the conclusion that Statement 1 is correct after getting the value of $ \alpha $ same as that given in the Statement. That value is intentionally given to be the same. The question basically wants to judge the knowledge of the concept mentioned in the Statement 2.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

